CS 70 Discrete Mathematics and Probability Theory Summer 2019 James Hulett and Elizabeth Yang DIS 1A

1 Propositional Practice

Convert the following English sentences into propositional logic and the following propositions into English. State whether or not each statement is true with brief justification.

- (a) There is a real number which is not rational.
- (b) All integers are natural numbers or are negative, but not both.
- (c) If a natural number is divisible by 6, it is divisible by 2 or it is divisible by 3.

(d)
$$(\forall x \in \mathbb{R}) (x \in \mathbb{C})$$

- (e) $(\forall x \in \mathbb{Z}) (((2 \mid x) \lor (3 \mid x)) \Longrightarrow (6 \mid x))$
- (f) $(\forall x \in \mathbb{N}) ((x > 7) \implies ((\exists a, b \in \mathbb{N}) (a + b = x)))$

2 DeMorgan's Law

Use truth tables to show that $\neg(A \lor B) \equiv \neg A \land \neg B$ and $\neg(A \land B) \equiv \neg A \lor \neg B$. These two equivalences are known as DeMorgan's Law.

3 XOR

The truth table of XOR is as follows.

Α	В	A XOR B
F	F	F
F	Т	Т
Т	F	Т
Т	Т	F

- 1. Express XOR using only (\land, \lor, \neg) and parentheses.
- 2. Does (A XOR B) imply $(A \lor B)$? Explain briefly.
- 3. Does $(A \lor B)$ imply (A XOR B)? Explain briefly.

4 Implication

Which of the following implications are always true, regardless of *P*? Give a counterexample for each false assertion (i.e. come up with a statement P(x, y) that would make the implication false).

(a)
$$\forall x \forall y P(x, y) \implies \forall y \forall x P(x, y).$$

(b)
$$\exists x \exists y P(x, y) \implies \exists y \exists x P(x, y).$$

(c)
$$\forall x \exists y P(x, y) \implies \exists y \forall x P(x, y).$$

(d) $\exists x \forall y P(x, y) \implies \forall y \exists x P(x, y).$