CS 70 Discrete Mathematics and Probability Theory Summer 2019 James Hulett and Elizabeth Yang DIS 3B

1 How Many Polynomials?

Let P(x) be a polynomial of degree at most 2 over GF(5). As we saw in lecture, we need d + 1 distinct points to determine a unique *d*-degree polynomial, so knowing the values for say, P(0), P(1), and P(2) would be enough to recover *P*. (For this problem, we consider two polynomials to be distinct if they return different values for any input.)

- (a) Assume that we know P(0) = 1, and P(1) = 2. Now consider P(2). How many values can P(2) have? How many distinct possibilities for *P* do we have?
- (b) Now assume that we only know P(0) = 1. We consider P(1) and P(2). How many different (P(1), P(2)) pairs are there? How many distinct possibilities for *P* do we have?
- (c) Now, let *P* be a polynomial of degree at most *d*. Assume we only know *P* evaluated at $k \le d+1$ different values. How many different possibilities do we have for *P*?

2 Polynomial Practice

- (a) If f and g are non-zero real polynomials, how many roots do the following polynomials have at least? How many can they have at most? (Your answer may depend on the degrees of f and g.)
 - (i) (2 points) f + g
 - (ii) (2 points) $f \cdot g$
 - (iii) (2 points) f/g, assuming that f/g is a polynomial
- (b) Now let f and g be polynomials over GF(p).
 - (i) (3 points) We say a polynomial f = 0 if

$$\forall x, f(x) = 0$$

. If $f \cdot g = 0$, is it true that either f = 0 or g = 0?

(ii) (3 points) If deg $f \ge p$, show that there exists a polynomial h with deg h < p such that f(x) = h(x) for all $x \in \{0, 1, ..., p-1\}$.

- (iii) (3 points) How many f of degree *exactly* d < p are there such that f(0) = a for some fixed $a \in \{0, 1, ..., p-1\}$?
- (c) (5 points) Find a polynomial f over GF(5) that satisfies f(0) = 1, f(2) = 2, f(4) = 0. How many such polynomials are there?

3 The CRT and Lagrange Interpolation

Let $n_1, ..., n_k$ be pairwise coprime, i.e. n_i and n_j are coprime for all $i \neq j$. The Chinese Remainder Theorem (CRT) tells us that there exist solutions to the following system of congruences:

$$x \equiv a_1 \pmod{n_1} \tag{1}$$

$$x \equiv a_2 \pmod{n_2} \tag{2}$$

$$x \equiv a_k \pmod{n_k} \tag{k}$$

and all solutions are equivalent $(\mod n_1n_2\cdots n_k)$. For this problem, parts (a)-(c) will walk us through a proof of the Chinese Remainder Theorem. We will then use the CRT to revisit Lagrange interpolation.

÷

- (a) We start by proving the k = 2 case: Prove that we can always find an integer x_1 that solves (1) and (2) with $a_1 = 1, a_2 = 0$. Similarly, prove that we can always find an integer x_2 that solves (1) and (2) with $a_1 = 0, a_2 = 1$.
- (b) Use part (a) to prove that we can always find at least one solution to (1) and (2) for any a_1, a_2 . Furthermore, prove that all possible solutions are equivalent (mod n_1n_2).
- (c) Now we can tackle the case of arbitrary k: Use part (b) to prove that there exists a solution x to (1)-(k) and that this solution is unique $(\mod n_1n_2\cdots n_k)$.
- (d) For two polynomials p(x) and q(x), mimic the definition of $a \mod b$ for integers to define $p(x) \mod q(x)$. Use your definition to find $p(x) \mod (x-1)$.
- (e) Define the polynomials x a and x b to be coprime if they have no common divisor of degree 1. Assuming that the CRT still holds when replacing x, a_i and n_i with polynomials (using the definition of coprime polynomials just given), show that the system of congruences

$$p(x) \equiv y_1 \pmod{(x - x_1)} \tag{1'}$$

$$p(x) \equiv y_2 \pmod{(x - x_2)} \tag{2'}$$

$$p(x) \equiv y_k \pmod{(x - x_k)}$$
 (k')

has a unique solution $(mod (x - x_1) \cdots (x - x_k))$ whenever the x_i are pairwise distinct. What is the connection to Lagrange interpolation?