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1 How Many Polynomials?
Let P(x) be a polynomial of degree at most 2 over GF(5). As we saw in lecture, we need d + 1
distinct points to determine a unique d-degree polynomial, so knowing the values for say, P(0),
P(1), and P(2) would be enough to recover P. (For this problem, we consider two polynomials to
be distinct if they return different values for any input.)

(a) Assume that we know P(0) = 1, and P(1) = 2. Now consider P(2). How many values can
P(2) have? How many distinct possibilities for P do we have?

(b) Now assume that we only know P(0) = 1. We consider P(1) and P(2). How many different
(P(1),P(2)) pairs are there? How many distinct possibilities for P do we have?

(c) Now, let P be a polynomial of degree at most d. Assume we only know P evaluated at k≤ d+1
different values. How many different possibilities do we have for P?

2 Polynomial Practice
(a) If f and g are non-zero real polynomials, how many roots do the following polynomials have

at least? How many can they have at most? (Your answer may depend on the degrees of f and
g.)

(i) (2 points) f +g

(ii) (2 points) f ·g
(iii) (2 points) f/g, assuming that f/g is a polynomial

(b) Now let f and g be polynomials over GF(p).

(i) (3 points) We say a polynomial f = 0 if

∀x, f (x) = 0

. If f ·g = 0, is it true that either f = 0 or g = 0?

(ii) (3 points) If deg f ≥ p, show that there exists a polynomial h with degh < p such that
f (x) = h(x) for all x ∈ {0,1, ..., p−1}.
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(iii) (3 points) How many f of degree exactly d < p are there such that f (0) = a for some
fixed a ∈ {0,1, . . . , p−1}?

(c) (5 points) Find a polynomial f over GF(5) that satisfies f (0) = 1, f (2) = 2, f (4) = 0. How
many such polynomials are there?

3 The CRT and Lagrange Interpolation
Let n1, . . .nk be pairwise coprime, i.e. ni and n j are coprime for all i 6= j. The Chinese Remainder
Theorem (CRT) tells us that there exist solutions to the following system of congruences:

x≡ a1 (mod n1) (1)
x≡ a2 (mod n2) (2)
... (

...)
x≡ ak (mod nk) (k)

and all solutions are equivalent (mod n1n2 · · ·nk). For this problem, parts (a)-(c) will walk us
through a proof of the Chinese Remainder Theorem. We will then use the CRT to revisit Lagrange
interpolation.

(a) We start by proving the k = 2 case: Prove that we can always find an integer x1 that solves (1)
and (2) with a1 = 1,a2 = 0. Similarly, prove that we can always find an integer x2 that solves
(1) and (2) with a1 = 0,a2 = 1.

(b) Use part (a) to prove that we can always find at least one solution to (1) and (2) for any a1,a2.
Furthermore, prove that all possible solutions are equivalent (mod n1n2).

(c) Now we can tackle the case of arbitrary k: Use part (b) to prove that there exists a solution x
to (1)-(k) and that this solution is unique (mod n1n2 · · ·nk).

(d) For two polynomials p(x) and q(x), mimic the definition of a mod b for integers to define
p(x) mod q(x). Use your definition to find p(x) mod (x−1).

(e) Define the polynomials x−a and x−b to be coprime if they have no common divisor of degree
1. Assuming that the CRT still holds when replacing x,ai and ni with polynomials (using the
definition of coprime polynomials just given), show that the system of congruences

p(x)≡ y1 (mod (x− x1)) (1’)
p(x)≡ y2 (mod (x− x2)) (2’)

... (
...)

p(x)≡ yk (mod (x− xk)) (k’)

has a unique solution (mod (x− x1) · · ·(x− xk)) whenever the xi are pairwise distinct. What
is the connection to Lagrange interpolation?
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