
CS 70 Discrete Mathematics and Probability Theory
Summer 2019 Course Notes Note 11

1 Self-Reference
In this note we will explore the deep connection between proofs and computation. At the heart of this
connection is the notion of self-reference, and it has far-reaching consequences for the limits of computation
(the Halting Problem) and the foundations of logic in mathematics (Gödel’s incompleteness theorem). Many
of the results we will talk about are based on the idea of self-reference; thus, we spend the first part of this
note exploring this idea.

1.1 The Liar’s Paradox
Recall that propositions are statements that are either true or false. We saw in an earlier lecture that some
statements are not well defined or too imprecise to be called propositions. But here is a statement that is
problematic for more subtle reasons:

“All Cretans are liars."

So said a Cretan in antiquity, thus giving rise to the so-called liar’s paradox which has amused and con-
founded people over the centuries. Why? Because if the statement above is true, then the Cretan was lying,
which implies the statement is false. But actually the above statement isn’t really a paradox; it simply yields
a contradiction if we assume it is true, but if it is false then there is no problem.

Consider another manifestation of self-reference, due to the great logician Bertrand Russell. In a village
with just one barber, everyone keeps themself clean-shaven. Some shave themselves, while others go to the
barber. The barber proclaims:

“I shave all and only those who do not shave themselves."

It seems reasonable then to ask the question: Does the barber shave themself? Thinking more carefully
about the question though, we see that, assuming that the barber’s statement is true, we are presented with
another self-referential paradox: a logically impossible scenario. If the barber does not shave themself, then
according to the above statement, the barber shaves themself. But then if the barber does shave themself,
the statement says exactly the opposite!

Of course, we can get around this paradox by simply saying that the barber’s statement must be false. But
there is no such way to get around the following (paradoxical) statement:

“This statement is false."

Is the statement above true? If the statement is true, then what it asserts must be true; namely that it is false.
But if it is false, then it must be true. So it really is a paradox, and we see that it arises because of the
self-referential nature of the statement.

1.2 Russell’s Paradox
While the above paradoxes may be interesting to puzzle through, they hardly seem to have any practical or
mathematical significance. However, mathematics is not immune from the power of self-reference, and the

CS 70, Summer 2019, Note 11 1



next example we see shook the mathematical world when it was first noted in the early 20th century, again
by Bertrand Russell.

Given a set s, we can always ask questions of the form “is x an element of s” for any x. In particular, we can
ask “is s an element of itself”, as sets are themselves allowed to contain sets. Suppose we define S to be the
set of all sets which do not contain themselves; that is S = {s | s 6∈ s}. We now ask: is S an element of itself?

If the answer is no, ie if we have that S 6∈ S, then when defining S we must have included it in itself, a
contradiction. On the flip side, if the answer is no, meaning that S ∈ S, then we never would have included
S in itself, as it doesn’t match the definition. Hence, we reach a contradiction no matter what the answer is
— we have a paradox!

When this paradox first came to light, many mathematicians were concerned that it would undermine the
consistency and usefulness of set theory, and by extension, most of modern mathematics. As you may have
noticed, however, modern mathematics still exists.1 Indeed, mathematicians were able to rethink the axioms
of set theory in order to prevent the set S from being defined, and hence to avoid this paradox. However, this
came at a cost: while sets can still contain other sets, we cannot define the set of all sets, nor many other
sets we would have found useful.

2 Computability
Self-reference is not only a problem for pure-mathematical realms like set-theory. As our main focus for
this note, we explore the question of whether computers can do everything — and using self-reference, we
show that the answer is actually no!

2.1 An Important Aside
Before diving in to our main results, we need to take a moment to make an important observation about
computer programs. Many of you are used to writing code on a computer by this point — but what is that
code actually? From your computer’s point of view, it’s just a (potentially very long) string of zeros and
ones! Thus, when we think of computer programs, we can equally well think of bit strings, as we can use
such strings to represent any program we might like to write.

This comes into play for our purposes because it means that it makes perfect sense for us to use programs as
the inputs for other programs. After all, we would have no problems accepting a bit string as the input to a
function, so we should be fine accepting a bit string and then interpreting it as a program. In particular, this
will allow us to pass a program’s source code as an input to itself, allowing for self-reference.

2.2 The Halting Problem
One natural question that arises in software engineering is “does this code work?” This question can be a
bit amorphous as “work” is subjective, so we will focus on a more basic question: does this code eventually
finish, or will it keep on running forever. One could see, for example, this being a useful tool to include in a
compiler. If the compiler notices that your code is going to loop forever, it likely means that there is a bug
somewhere in it, so the compiler can bring this to your attention and potentially save you from many hours
of painful debugging.

1Citation needed.

CS 70, Summer 2019, Note 11 2



Formally, in order to solve the “Halting Problem”, we would need to write a program TestHalt that
behaves as follows:

TestHalt(P,x)=

{
“yes", if program P halts on input x
“no", if program P loops on input x

(1)

Unfortunately, as Alan Turing proved in 1936, solving this problem is impossible.

Theorem 11.1. The Halting Problem is uncomputable. That is, it is impossible to write a program TestHalt
that behaves as specified by (1) on all possible inputs.

Proof. Assume for the sake of contradiction that the Halting Problem is in fact computable. That is, assume
that we have some program TestHalt which outputs true if P(x) halts and false otherwise. We now
construct a program on which TestHalt must fail:

Turing(P):

if TestHalt(P, P) = True: loop forever

else: halt

Solely under the assumption that TestHalt exists, it is straightforward to implement Turing using
TestHalt as a subroutine.

Now consider what happens if we call Turing with its own source code as input. That is, what does
Turing(Turing) do? This depends on what TestHalt(Turing, Turing) returns. If TestHalt(Turing,
Turing) returns true, Turing(Turing)will loop forever, meaning the correct answer for TestHalt(Turing,
Turing) was actually false. But if TestHalt(Turing, Turing) returns false, Turing(Turing)
will halt immediately, meaning the correct answer for TestHalt(Turing, Turing) is actually true!

What this tells us is that, no matter what TestHalt(Turing, Turing) returns, it will be wrong!2 This
contradicts our assumption that TestHalt behaves as desired on all possible inputs, so we must in fact
have that no such function TestHalt can ever exist.

In fact, there are many more questions we would like to answer about programs but cannot. For example,
we cannot know if a program ever outputs anything or if it ever executes a specific line. We also cannot
check if two programs produce the same output. And we cannot check to see if a given program is a virus.
These issues are explored in greater detail in the advanced course CS172 (Computability and Complexity).

2.3 Diagonalization and the Halting Problem [OPTIONAL]

As an aside, we note that the above proof can also be phrased as a proof by diagonalization, the same
technique that we used in the previous lecture to show that the real numbers are uncountable. Why? Since
the set of all computer programs is countable (they are, after all, just finite-length strings over some alphabet,
and the set of all finite-length strings is countable), we can enumerate all programs as in figure 1 (where Pi

represents the ith program).

The (i, j)th entry in the table above is H if program Pi halts on input Pj, and L (for “Loops”) if it does not
halt. Now if the program Turing exists it must occur somewhere on our list of programs, say as Pn. But
this cannot be, since if the nth entry in the diagonal is H, meaning that Pn halts on Pn, then by its definition
Turing loops on Pn; and if the entry is L, then by definition Turing halts on Pn. Thus the behavior of

2In order to be fully formal here, we should also consider the cases where TestHalt(Turing, Turing) loops forever or
errors out. In any such case, we consider TestHalt to be wrong, as it certainly does not return the correct answer.

CS 70, Summer 2019, Note 11 3



Figure 1: The Halting Problem as Diagonalization

Turing is different from that of Pn, and hence Turing does not appear on our list. Since the list contains
all possible programs, we must conclude that the program Turing does not exist. And since Turing is
constructed by a simple modification of TestHalt, we can conclude that TestHalt does not exist either.
Hence the Halting Problem cannot be solved.

2.4 The “Easy” Halting Problem
As noted above, the key idea in establishing the uncomputability of the Halting Problem is self-reference:
Given a program P, we ran into trouble when deciding whether P(P) halts. But in practice, how often do
we want to execute a program with its own description as input? Is it possible that if we disallow this kind
of self-reference, we can solve the Halting Problem?

Taking this idea to its logical extreme, what happens if we simply don’t allow our program to take in any
input at all? Formally, we say that we can solve the “Easy” Halting Problem if we can write a program
EasyTestHalt such that

EasyTestHalt(P)=

{
“yes", if program P halts given no input
“no", if program P loops given no input

(2)

Not allowing our program to take an input seems like it should make the problem easier, hence the name
“Easy Halting Problem”. However, it turns out that even this seemingly simpler problem is still uncom-
putable. This is formalized in the following theorem.

Theorem 11.2. The Easy Halting Problem is undecidable. That is, there is no program EasyTestHalt
that behaves as specified in (2) on all possible inputs.

Proof. Suppose for the sake of contradiction that there was a program EasyTestHalt that worked on
every possible input. I claim that we can implement TestHalt as follows:

TestHalt(P, x):

def P’():

return P(x)

return EasyTestHalt(P’)

Indeed, notice that despite the fact that P’ takes no input, we defined it such that it will halt if and only
if P(x) does. Thus, since we have assumed that EasyTestHalt always returns the correct answer,
whatever answer it returns on input P’ will be the correct answer for TestHalt on inputs P and x.

Thus, we have now given a way to implement TestHalt such that it works on every possible input. But
Theorem 11.1 tells us that this is impossible! Thus, we have reached a contradiction, and so can conclude
that the Easy Halting Problem must in fact be uncomputable.

CS 70, Summer 2019, Note 11 4



What this proof is effectively saying is what the quotation marks around “Easy” may have tipped you off
to: solving the Easy Halting Problem is no easier than solving the original. Indeed, our proof showed that
any algorithm to solve the Easy Halting Problem can also be used to solve the regular Halting Problem, as
we can just have the input to our function “hard-coded” into it. This notion of using one problem to solve
another, and hence showing that the former can be no easier than the latter, is known as a reduction.

2.5 Reductions
We say that a problem A reduces to a problem B if we can use problem B in order to solve problem A. That
is, we can write a program PA to solve A so long as we have a program PB solving B that we can use as a
subroutine.3 For the purposes of the reduction, we treat PB as a “black box” — we know that it works, but
we don’t know (or need to know) how precisely it works. Being agnostic to the inner workings of PB in this
way means that our reduction works regardless of how PB is implemented.

In the case of the previous section, this means that EasyTestHalt cannot exist no matter how clever
we are in our implementation. Had we “opened up the black box” and made assumptions about how
EasyTestHalt worked, we would only have proved that EasyTestHalt could not be implemented
in that particular way, while leaving open the possibility that there is some other way of doing it which does
not fit our assumptions.

Before moving on, we will give one more example of a reduction. In this case, we will do the reverse of
what we did in the proof of Theorem 11.2: instead of reducing the Halting Problem to the Easy Halting
Problem, we will reduce the Easy Halting Problem to the regular one. To do this, we suppose that we have
access to a working version of TestHalt and write EasyTestHalt as follows:

EasyTestHalt(P):

def P’(x):

P()

return TestHalt(P’, 42)

We notice here that P’ simply ignores its input and runs P. Thus, P’(42) will halt precisely when P()
does, meaning that the (correct) return value from TestHalt(P’, 42) is precisely the value we wished
to return for EasyTestHalt(P).

What this tells us is that, at the very least, the Easy Halting Problem is no more difficult than the regular
Halting Problem. Combining this with our results from Section 2.4, we see that the Easy and regular Halting
Problems are in fact the same difficulty, ie, a solution to either problem could be used to construct a solution
to the other without much difficulty.

3 Beyond Computability
In the previous sections, we have seen examples of problems for which it is impossible to write an algorithm
which always finishes in finite time and gives the correct answer. However, if we relax these constraints, we
can sometimes get somewhere — and uncover hidden structures of uncomputable problems.

3This is the most general form of reduction, known as a Turing reduction, as it allows us to use PB as many times as we want
and use its response however we choose. There are many other types of reductions which add restrictions on how and how often
we can use PB, but we will not be discussing them today.

CS 70, Summer 2019, Note 11 5



3.1 Recursive Enumerability
One idea that may have come up when you first saw the definition of the Halting Problem would be the
following “algorithm”: on inputs P and x, we simply simulate P(x). If it halts, we can immediately output
true; otherwise, we output false.

However, this doesn’t actually form an algorithm as specified by (1) — how do we know when to declare
that P(x) is never going to halt? We could, for example, wait for a very long time, say 9000 years, before
giving up and declaring that it must be looping forever. But then what happens if P(x) does actually halt,
but takes 9001 years to do so? We’ll have given a wrong answer!

The only way to make this algorithm avoid giving a wrong answer, then, is to have it never give up on an
program; that is, we will “wait forever” for P(x) to halt. However, this means that if P(x) never halts,
TestHalt(P, x) won’t either. This is not allowed in our original definition in (1), but we can relax our
definition in order to make it fine. This relaxation leads to the notion of recursive enumerability:

Definition 11.1. We say a problem A is “recursively enumerable” or “recognizable” if there exists a “rec-
ognizer” RA such that
(1) For any x for which the correct answer is “yes”, RA(x) outputs “yes” in finite time.
(2) For any x for which the correct answer is “no”, RA(x) either outputs “no” in finite time or loops forever.

Applying this definition, we see that our previous “algorithm” of simulating P(x) and returning true if/when
it halts is in fact a recognizer for the Halting Problem. Hence, while the Halting Problem is not computable,
it is recognizable.

3.2 Hilbert’s Entscheidungsproblem
In 1928, the famous mathematicians David Hilbert and Wilhelm Ackermann proposed a series of challenges
for their peers to ponder. Here, we will take a closer look at the third of these challenges, known as the
Entscheidungsproblem (German for “decision problem”), which roughly asked for an algorithm that could
determine the truth or falsehood of any statement in a sufficiently formal logical system.

In 1936, at the same time that he proved the halting problem is undecidable, Alan Turing also gave a negative
answer to Hilbert’s Entscheidungsproblem — no algorithm solving it can possibly exist. In short, Turing
showed that a sufficiently expressive logical system can encode statements of the form “P(x) halts”. This
means that an algorithm for Hilbert’s Entscheidungsproblem could be used to solve the Halting Problem by
simply asking it if the statement “P(x) halts” is true or false.4

While this shows that the Entscheidungsproblem is not computable, it turns out that it is still recursively
enumerable! To prove this, we give the following recognizer for it. We start by trying all possible proofs
that involve only one step. If one of them proves our statement, we output “yes”. Otherwise, we move on to
checking all possible proofs that take two steps. If any of them works, we output “yes”; otherwise, we move
on to proofs with three steps. If a statement has a finite length proof, this recognizer will eventually find it
and output “yes”; if there is no proof, the recognizer will loop forever.5

We note here that our recognizer makes two key assumptions. The first is that a proof can be algorithmically
checked for correctness, while the second is that at any point in the proof, there are only a finite number of

4Note that this is another example of a reduction!
5Technically, this recognizes a slightly different problem than what we were originally interested in: it recognizes whether or

not there is a proof of a statement, rather than whether or not the statement is true. However, in addition to his more famous
incompleteness theorem, Gödel also proved a completeness theorem which says that every “true” statement in first-order logic can
be proved. What exactly “true” means in this context is beyond our scope.

CS 70, Summer 2019, Note 11 6



“next steps” one might take. These assumptions are generally not true of the human-readable proofs we are
used to, but are true in the formal proof systems generally considered for these sorts of problems.

3.3 Complete Problems
One thing you may have noticed is that the recognizers for the Halting Problem and the Entscheidungsprob-
lem have significant parallels in their design. Indeed, one reason why this is the case is that they are both
complete for the class or recognizable problems; that is, any recursively enumerable problem can be reduced
to the Halting Problem and to the Entscheidungsproblem.

Theorem 11.3. Let A be recursively enumerable. Then A can be reduced to the Halting Problem.

Proof. Since A is recursively enumerable, we know that we have some recognizer for it RA. Now consider
the following solver for A, which uses both that recognizer and a “black box” solver for TestHalt:

Solver(x):

if TestHalt(RA, x) = false: return false

else: return RA(x)

On input x, there are three things RA might do: it could return “yes”, it could return “no”, or it could loop
forever. In the former two cases, we know from Definition 11.1 that the answer RA returns is the correct
answer for x, so we are correct to return in. For the final case, Definition 11.1 tells us that RA will only loop
infinitely if the correct answer is “no”, meaning we again in this case will return correctly.

Notice here that we critically used TestHalt in order to circumvent the problems we would have had if RA
loops forever. The possibility of looping on a “no” input is what makes RA a recognizer rather than a solver,
so being able to spot when that would happen and act accordingly gives us an algorithm for our problem!

Exercise. Prove Theorem 11.3 with Hibert’s Entscheidungsproblem instead of the Halting Problem.

3.4 Co-Recursively Enumerable
Having worked with recursive enumerability, we might now be wondering what was so special about the
“no” case. That is, what happens if instead of allowing the algorithm to loop if the answer to its input is
false, we allow it to loop if the answer to its input is true? With this change, we get the following definition:

Definition 11.2. We say that a problem A is “co-recursively enumerable” or “co-recognizable” if there
exists a “co-recognizer” CRA such that
(1) For any x for which the correct answer is “yes”, CRA(x) outputs “yes” in finite time or loops forever.
(2) For any x for which the correct answer is “no”, CRA(x) outputs “no” in finite time.

Here, the “co-” stands for “complement”. This is because every co-recognizable problem is the complement
of a recognizable one; that is, it is a recognizable problem with all “yes” and “no” answers reversed. For
example, the “Looping Problem”, which asks if a program loops forever, is co-recursively enumerable, as it
is the complement of the Halting Problem.

Sanity check! Give a co-recognizer for the Looping Problem.

CS 70, Summer 2019, Note 11 7



We might now well ask how Definitions 11.1 and 11.2 compare. In particular, is it possible for a problem to
be both recognizable and co-recognizable? As it turns out, the answer is yes — but only if the problem is
actually computable!

Theorem 11.4. A problem A is both recursively enumerable and co-recursively enumerable if and only if it
is computable.

Proof.
If: Suppose that A is computable. This means that we have a solver for A which always runs in finite
time and always outputs the correct answer. Notice that a solver is in particular both a recognizer and a
co-recognizer, so A fits both definitions 11.1 and 11.2.

Only If: Suppose that A is both recognizable and co-recognizable. This means that we have a recognizer RA
and a co-recognizer CRA. We can create a solver for A by running RA and CRA “in parallel” and outputting
the answer of whichever of them terminates first. Note that regardless of what the correct answer is for a
given input x, at least one of RA(x) or CRA(x) must halt in finite time — and whenever either of them halt,
they output the correct answer.

One small technicality we need to deal with in the above proof is what exactly it means to run the recognizer
and co-recognizer “in parallel”. On a real-world computer, we are able to multi-thread, so this is not a
problem, but in many formal models of computation, this is not available to us. However, we note that what
we can instead do is interleave the steps of our simulations of the two programs. That is, we first run one
step of RA, then one step of CRA, then the second step of RA and of CRA, and so forth. As long as at least one
of these two functions eventually halts (which we know is true), this interleaved simulation will also finish
in at most twice that amount of time.

Now that we have Theorem 11.4, we can state a few facts which it seems difficult to prove in any other
way. In particular, since we know that the “Looping Problem” is co-recongizable but not computable,
we know that it is not recognizable. Similarly, we can say that neither the Halting Problem nor Hilbert’s
Entscheidungsproblem are co-recognizable.

3.5 Postscript
In this note, we have barely scratched the surface of the beautiful and complex structure that is undecidable
problems. Indeed, there are problems so “hard” as to be neither recursively enumerable nor co-recursively
enumerable, as well as uncomputable problems which are strictly easier than the Halting Problem, meaning
we can reduce those problems to the Halting Problem, but can’t go the other way around. There are even
uncomputable problems which are incomparable to one another — you can’t do a reduction in either direc-
tion! If you’d like to learn more about this, you can may consider taking Math 136, Incompleteness and
Undecidability.

4 Godel’s Incompleteness Theorem [OPTIONAL]
In 1900, the great mathematician David Hilbert posed the following two questions about the foundation of
logic in mathematics:

1. Is arithmetic consistent?

2. Is arithmetic complete?

CS 70, Summer 2019, Note 11 8



To understand the questions above, we recall that mathematics is a formal system based on a list of axioms
(for example, Peano’s axioms of the natural numbers, axiom of choice, etc.) together with rules of inference.
The axioms provide the initial list of true statements in our system, and we can apply the rules of inference
to prove other true statements, which we can again use to prove other statements, and so on.

The first question above asks whether it is possible to prove both a proposition P and its negation ¬P. If
this is the case, then we say that arithmetic is inconsistent; otherwise, we say arithmetic is consistent. If
arithmetic is inconsistent, meaning there are false statements that can be proved, then the entire arithmetic
system will collapse because from a false statement we can deduce anything, so every statement in our
system will be vacuously true.

The second question above asks whether every true statement in arithmetic can be proved. If this is the case,
then we say that arithmetic is complete. We note that given a statement, which is either true or false, it can
be very difficult to prove which one it is. As a real-world example, consider the following statement, which
is known as Fermat’s Last Theorem:

(∀n≥ 3) ¬(∃x,y,z ∈ Z+)(xn + yn = zn).

This theorem was first stated by Pierre de Fermat in 1637,6 but it has eluded proofs for centuries until it was
finally proved by Andrew Wiles in 1994.

In 1928, Hilbert formally posed the questions above as the Entscheidungsproblem. Most people believed
that the answer would be “yes,” since ideally arithmetic should be both consistent and complete. However,
in 1930 Kurt Gödel proved that the answer is in fact “no”: Any formal system that is sufficiently rich
to formalize arithmetic is either inconsistent (there are false statements that can be proved) or incomplete
(there are true statements that cannot be proved). Gödel proved his result by exploiting the deep connection
between proofs and arithmetic. Actually Gödel’s theorem also embodies a deep connection between proofs
and computation, which was illuminated after Turing formalized the definition of computation in 1936 via
the notion of Turing machines and computability.

In the rest of this note, we will first sketch the essence of Gödel’s proof, and then we will outline an easier
proof of the theorem using what we know about the Halting Problem.

4.1 Sketch of Godel’s Proof
Suppose we have a formal system F , which consists of a list of axioms and rules of inference, and assume
F is sufficiently expressive that we can use it to express all of arithmetic.

Now suppose we can write the following statement:

S(F) = “This statement is not provable in F .”

Once we have this statement, there are two possibilities:

1. Case 1: S(F) is provable. Then the statement S(F) is true, but by inspecting the content of the
statement itself, we see that this implies S(F) should not be provable. Thus, F is inconsistent in this
case.

2. Case 2: S(F) is not provable. By construction, this means the statement S(F) is true. Thus, F is
incomplete in this case, since there is a true statement (namely, S(F)) that is not provable.

6Along with the famous note: “I have discovered a truly marvelous proof of this, which this margin is too narrow to contain.”

CS 70, Summer 2019, Note 11 9



To complete the proof, it now suffices to construct such a statement S(F). This is the difficult part of Gödel’s
proof, which requires a clever encoding (a so-called “Gödel numbering”) of symbols and propositions as
natural numbers.

4.2 Proof via the Halting Problem
Let us now see how we can prove Gödel’s result by reduction to the Halting Problem. Here we proceed by
contradiction: Suppose arithmetic is both consistent and complete; we will use this assumption to solve the
Halting Problem, which we have seen is impossible.

Recall that in the Halting Problem we want to decide whether a given program P halts on a given input x. For
fixed P and x, let SP,x denote the proposition “P halts on input x.” The key observation is that this proposition
can be phrased as a statement in arithmetic. The form of the statement SP,x will be

∃z(z encodes a valid halting execution sequence of P on input x).

Although the details require some work, your programming intuition should hopefully convince you that
such a statement can be written, in a fairly mechanical way, using only the language of standard arithmetic,
with the usual operators, connectives and quantifiers: basically the statement just has to check, step by step,
that the string z (encoded as a very long integer in binary) lists out the sequence of states that a computer
would go through when running program P on input x.

Now let us assume, for contradiction, that arithmetic is both consistent and complete. This means that, for
any (P,x), the statement SP,x is either true or false, and that there must exist a proof in arithmetic of either SP,x

or its negation, ¬SP,x (and not both). But now recall that a proof is simply a finite binary string. Therefore,
there are only countably many possible proofs, so we can enumerate them one by one and search for a proof
of SP,x or ¬SP,x. The following program performs this task:

Search(P,x)

for every proof q:

if q is a proof of SP,x then output “yes”

if q is a proof of ¬SP,x then output “no”

The program Search takes as input the program P, and proceeds to check every possible proof until it finds
either one that proves SP,x, or one that proves ¬SP,x. By assumption, we know that one of these proofs
always exists, so the program Search will terminate in finite time, and it will correctly solve the Halting
Problem. On the other hand, since we have already established that the Halting Problem is uncomputable,
such a program Search cannot exist. Therefore, our initial assumption must be wrong, so it is not true that
arithmetic is both consistent and complete.

Note that in the argument above we rely on the fact that, given a proof, we can construct a program that
mechanistically checks whether it is a valid proof of a given proposition. This is a manifestation of the
intimate connection between proofs and computation.

CS 70, Summer 2019, Note 11 10


