
CS 70 Discrete Mathematics and Probability Theory
Summer 2019 Course Notes Note 14

Conditional Probability, Independence, and Combinations of Events
One of the key properties of coin flips is independence: if you flip a fair coin ten times and get ten T ’s, this
does not make it more likely that the next coin flip will be H’s. It still has exactly 50% chance of being H.

By contrast, suppose while dealing cards, the first ten cards are all red (hearts or diamonds). What is the
chance that the next card is red? We started with exactly 26 red cards and 26 black cards. But after dealing
the first ten cards, we know that the deck has 16 red cards and 26 black cards. So the chance that the
next card is red is 16

42 . So unlike the case of coin flips, now the chance of drawing a red card is no longer
independent of the previous card that was dealt. This is the phenomenon we will explore in this note on
conditional probability.

1 Conditional Probability
Let’s consider an example with a smaller sample space. Suppose we toss m = 4 labeled balls into n = 3
labeled bins; this is a uniform sample space with 34 = 81 sample points. From Note 13, we already know
that the probability the first bin is empty is (1− 1

3)
4 = (2

3)
4 = 16

81 . What is the probability of this event
given that the second bin is empty? Let A and B respectively denote the former and the latter events. In
the language of conditional probability, we wish to compute the probability P[A|B], which we read as “the
conditional probability of A given B.”

How should we compute P[A|B]? Since event B is guaranteed to happen, we need to look not at the whole
sample space Ω, but at the smaller sample space consisting only of the sample points in B. In terms of the
picture below, we are no longer looking at the large oval, but only the oval labeled B:

Ω = A
B

What should be the probability of each sample point ω ∈ B given that the event B occurs? If they all simply
inherited their probabilities from Ω , then the sum of these probabilities would be ∑ω∈BP[ω] = P[B], which
in general is less than 1. So, to get the correct normalization, we need to scale the probability of each sample
point by 1

P[B] . That is, for each sample point ω ∈ B, the new probability becomes

P[ω|B] = P[ω]

P[B]
.

Now it is clear how to compute P[A|B]: namely, we just sum up these scaled probabilities over all sample
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points that lie in both A and B:

P[A|B] = ∑
ω∈A∩B

P[ω|B] = ∑
ω∈A∩B

P[ω]

P[B]
=

P[A∩B]
P[B]

.

Definition 14.1 (Conditional Probability). For events A,B ⊆ Ω in the same probability space such that
P[B]> 0, the conditional probability of A given B is

P[A|B] = P[A∩B]
P[B]

.

Returning to our example of balls and bins, to compute P[A|B] we need to figure out P[A∩B]. But A∩B
is the event that both the first two bins are empty, i.e., all four balls fall in the third bin. So P[A∩B] = 1

81
(why?). Therefore,

P[A|B] = P[A∩B]
P[B]

=
1/81
16/81

=
1
16

.

Not surprisingly, 1
16 = 0.0625 is quite a bit less than 16

81 ≈ 0.1975; knowing that bin 2 is empty makes it
significantly less likely that bin 1 will be empty.

Example: Card Dealing

Let’s apply the ideas discussed above to compute the probability that, when dealing 2 cards and the first card
is known to be an ace, the second card is also an ace. Let B be the event that the first card is an ace, and let
A be the event that the second card is an ace.

To compute P[A|B], we need to figure out P[A∩B]. This is the probability that both cards are aces. Note
that there are 52 ·51 sample points in the sample space, since each sample point is a sequence of two cards.
A sample point is in A∩B if both cards are aces. This can happen in 4 ·3 = 12 ways.

Since each sample point is equally likely, P[A∩B] = 12
52·51 , while P[B], the probability of drawing an ace in

the first trial, is 4
52 . Therefore,

P[A|B] = P[A∩B]
P[B]

=
3

51
,

which is less than P[A] = 4
52 (check this). Hence, if the first card is an ace, it makes it less likely that the

second card is also an ace.

2 Bayesian Inference
Now that we have introduced the notion of conditional probability, we can see how it is used in real world
settings. Conditional probability is at the heart of a subject called Bayesian inference, used extensively in
fields such as machine learning, communications and signal processing. Bayesian inference is a way to
update knowledge after making an observation. For example, we may have an estimate of the probability
of a given event A. After event B occurs, we can update this estimate to P[A|B]. In this interpretation, P[A]
can be thought of as a prior probability: our assessment of the likelihood of an event of interest, A, before
making an observation. It reflects our prior knowledge. P[A|B] can be interpreted as the posterior probability
of A after the observation. It reflects our new knowledge.

Here is an example of where we can apply such a technique. A pharmaceutical company is marketing a new
test for a certain medical disorder. According to clinical trials, the test has the following properties:
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1. When applied to an affected person, the test comes up positive in 90% of cases, and negative in 10%
(these are called “false negatives”).

2. When applied to a healthy person, the test comes up negative in 80% of cases, and positive in 20%
(these are called “false positives”).

Suppose that the incidence of the disorder in the US population is 5%; this is our prior knowledge. When a
random person is tested and the test comes up positive, how can we update the probability that the person
has the disorder? (Note that this is presumably not the same as the simple probability that a random person
in the population has the disorder, which is just 1

20 .) The implicit probability space here is the entire US
population with equal probabilities.

The sample space here consists of all people in the US — denote their number by N (so N ≈ 325 million).
Let A be the event that a person chosen at random is affected, and B be the event that a person chosen at
random tests positive. Now we can rewrite the information above:

• P[A] = 0.05, (5% of the U.S. population is affected)

• P[B|A] = 0.9 (90% of the affected people test positive)

• P[B|A] = 0.2 (20% of healthy people test positive)

We want to calculate P[A|B]. We can proceed as follows:

P[A|B] = P[A∩B]
P[B]

=
P[B|A]P[A]

P[B]
. (1)

We obtained the second equality above by applying the definition of conditional probability:

P[B|A] = P[A∩B]
P[A]

.

Now we need to compute P[B]. This is the probability that a random person tests positive. To compute
this, we can sum two values: the probability P[A∩B] that a healthy person tests positive and the probability
P[A∩B] that an affected person tests positive. We can sum because the events A∩B and A∩B do not
intersect:

A
B

A∩B A∩B
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By again applying the definition of conditional probability, we have:

P[B] = P[A∩B]+P[A∩B] = P[B|A]P[A]+P[B|A]P[A] (2)

= P[B|A]P[A]+P[B|A](1−P[A]).

Combining (1) and (2), we have expressed P[A|B] in terms of P[A],P[B|A] and P[B|A]:

P[A|B] = P[B|A]P[A]
P[B|A]P[A]+P[B|A](1−P[A])

(3)

By plugging in the values written above, we obtain P[A|B] = 9
47 ≈ 0.19.

Equation (3) is useful for many inference problems. We are given P[A], which is the (unconditional) proba-
bility that the event of interest, A, happens. We are given P[B|A] and P[B|A], which quantify how noisy the
observation is. (If P[B|A] = 1 and P[B|A] = 0, for example, the observation is completely noiseless.) Now we
want to calculate P[A|B], the probability that the event of interest happens given we made the observation.
Equation (3) allows us to do just that.

Of course, (1), (2) and (3) are derived from the basic axioms of probability and the definition of conditional
probability, and are therefore true with or without the above Bayesian inference interpretation. However,
this interpretation is very useful when we apply probability theory to study inference problems.

3 Bayes’ Rule and Total Probability Rule
Equations (1) and (2) are very useful in their own right. The first is called Bayes’ Rule and the second is
called the Total Probability Rule. Bayes’ Rule is useful when one wants to calculate P[A|B] but one is
given P[B|A] instead, i.e., it allows us to “flip” things around.

The Total Probability Rule is an application of the strategy of “dividing into cases.” There are two possibili-
ties: either an event A happens or A does not happen. If A happens, the probability that B happens is P[B|A].
If A does not happen, the probability that B happens is P[B|A]. If we know or can easily calculate these two
probabilities and also P[A], then the Total Probability Rule yields the probability of event B.

3.1 Examples
Tennis Match

You are about to play a tennis match against a randomly chosen opponent and you wish to calculate your
probability of winning. You know your opponent will be one of two people, X or Y . If person X is chosen,
you will win with probability 0.7. If person Y is chosen, you will win with probability 0.3. Your opponent
is chosen by flipping a biased coin such that the probability of choosing X is 0.6.

Let’s first determine which events we are interested in. Let A be the event that you win. Let BX be the event
that person X is chosen, and let BY be the event that person Y is chosen. We wish to calculate P[A]. Here is
what we know so far:

• P[A|BX ] = 0.7, (if person X is chosen, you win with probability 0.7)

• P[A|BY ] = 0.3, (if person Y is chosen, you win with probability 0.3)
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• P[BX ] = 0.6, (person X is chosen with probability 0.6)

• P[BY ] = 0.4, (person Y is chosen with probability 0.4)

By using the Total Probability Rule, we have P[A] = P[A|BX ]P[BX ] +P[A|BY ]P[BY ], and plugging in the
known values gives P[A] = (0.7×0.6)+(0.3×0.4) = 0.54.

Balls and Bins

Imagine we have the following two bins each containing some number of black and white balls:

Suppose one of the two bins is chosen with equal probability and a ball is drawn from the chosen bin
uniformly at random. What is the probability that we picked Bin 1 given that a white ball was drawn, i.e.,
P[Bin 1 | f]?
Is the answer 2

3 , since we know that there are a total of three white balls, two of which are in Bin 1? This
reasoning is incorrect. Instead, what we should do is appropriately scale each sample point as the following
picture shows:

This diagram shows that the sample space Ω consists of the outcomes in event B1 (corresponding to Bin 1)
and event B2 (corresponding to Bin 2), i.e., Ω = B1∪B2. We can use the definition of conditional probability
to see that

P[Bin1 | f] = 1
10 +

1
10

1
10 +

1
10 +

1
4

=
2

10
9

20

=
4
9
.

Let us try to achieve this probability using Bayes’ Rule. To apply Bayes’ Rule, we need to compute
P[ f|Bin 1], P[Bin 1], and P[ f]. Here, P[ f|Bin 1] is the chance that we pick a white ball given that
we picked Bin 1, which is 2

5 . P[Bin 1] = 1
2 , as given in the description of the problem. Finally, P[ f] can be

computed using the Total Probability Rule:

P[ f] = P[ f|Bin 1]×P[Bin 1]+P[ f|Bin 2]×P[Bin 2] =
2
5
× 1

2
+

1
2
× 1

2
=

9
20

.

Observe that we can apply the Total Probability Rule here because P[Bin 1] is the complement of P[Bin 2].
Finally, upon plugging the above values into Bayes’ Rule, we obtain the probability that we picked Bin 1
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given that we picked a white ball:

P[Bin 1 | f] = 2
5 ×

1
2

9
20

=
2

10
9

20

=
4
9
.

All we have done above is to combine Bayes’ Rule and the Total Probability Rule; this is also how we
obtained (3). Equivalently, we could have plugged in the appropriate values to (3).

3.2 Generalization
We now consider Bayes’ Rule and the Total Probability Rule in a more general context. First, we define a
partition of an event as follows.

Definition 14.2 (Partition of an event). We say that an event A is partitioned into n events A1, . . . ,An if

1. A = A1∪A2∪ ·· · ∪An, and

2. Ai∩A j =∅ for all i 6= j (i.e., A1, . . . ,An are mutually exclusive).

In other words, each outcome in A belongs to exactly one of the subsets A1, . . . ,An.

Now, let A1, . . . ,An be a partition of the sample space Ω. Then, the Total Probability Rule for any event B
is

P[B] =
n

∑
i=1

P[B∩Ai] =
n

∑
i=1

P[B|Ai]P[Ai], (4)

while Bayes’ Rule, assuming P[B] 6= 0, is given by

P[Ai|B] =
P[B|Ai]P[Ai]

P[B]
=

P[B|Ai]P[Ai]

∑
n
j=1P[B|A j]P[A j]

, (5)

where the second equality follows from the Total Probability Rule.

Exercise. Show (4) and (5).

4 Combinations of Events
In most applications of probability in Computer Science, we are interested in things like P[

⋃n
i=1 Ai] and

P[
⋂n

i=1 Ai], where the Ai are simple events (i.e., we know or can easily compute P[Ai]). The intersection⋂
i Ai corresponds to the logical AND of the events Ai, while the union

⋃
i Ai corresponds to their logical OR.

As an example, if Ai denotes the event that a failure of type i happens in a certain system, then
⋃

i Ai is the
event that the system fails.

In general, computing the probabilities of such combinations can be very difficult. In this section, we discuss
some situations where it can be done. Let’s start with independent events, for which intersections are quite
simple to compute.
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4.1 Independent Events
Definition 14.3 (Independence). Two events A,B in the same probability space are said to be independent
if P[A∩B] = P[A]×P[B].

The intuition behind this definition is the following. Suppose that P[B]> 0. Then we have

P[A|B] = P[A∩B]
P[B]

=
P[A]×P[B]

P[B]
= P[A].

Thus independence has the natural meaning that “the probability of A is not affected by whether or not B
occurs.” (By a symmetrical argument, we also have P[B|A] = P[B] provided P[A]> 0.) For events A,B such
that P[B]> 0, the condition P[A|B] = P[A] is actually equivalent to the definition of independence.

Several of our previously mentioned random experiments consist of independent events. For example, if we
flip a coin twice, the event of obtaining heads in the first trial is independent of the event of obtaining heads
in the second trial. The same applies for two rolls of a die; the outcomes of each trial are independent.

The above definition generalizes to any finite set of events:

Definition 14.4 (Mutual independence). Events A1, . . . ,An are said to be mutually independent if for every
subset I ⊆ {1, . . . ,n} with size |I| ≥ 2,

P[∩i∈IAi] = ∏
i∈I

P[Ai]. (6)

An equivalent definition of mutual independence is as follows.

Definition 14.5 (Mutual independence). Events A1, . . . ,An are said to be mutually independent if for all
Bi ∈ {Ai,Ai}, i = 1, . . . ,n,

P[B1∩·· ·∩Bn] =
n

∏
i=1

P[Bi]. (7)

Remarks.

1. In Definition 14.4, (6) needs to hold for every subset I of {1, . . . ,n} with size |I| ≥ 2. The cases of
|I|= 0 and |I|= 1 are omitted, as they impose no constraints.

2. Note that (6) imposes 2n−n−1 constraints on the probability distribution, while (7) defines 2n con-
straints. It turns out that exactly n+1 constraints implied by (7) are actually redundant.

Exercise. Show that Definitions 14.4 and 14.5 are equivalent.

For mutually independent events A1, . . . ,An, it is not hard to check from the definition of conditional proba-
bility that, for any 1≤ i≤ n and any subset I ⊆ {1, . . . ,n}\{i}, we have

P[Ai|
⋂

j∈I A j] = P[Ai].

Note that the independence of every pair of events (so-called pairwise independence) does not necessarily
imply mutual independence. As illustrated in the following example, it is possible to construct three events
A,B,C such that each pair is independent but the triple A,B,C is not mutually independent.
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Example: Pairwise Independent but Not Mutually Independent

Suppose you toss a fair coin twice and let A be the event that the first flip is H and B be the event that the
second flip is H. Now let C be the event that both flips are the same (i.e., both H’s or both T ’s). Of course
A and B are independent. What is more interesting is that so are A and C: given that the first toss came up
H, the chance of the second flip being the same as the first is still 1/2. Another way of saying this is that
P[A∩C] = P[A]P[C] = 1/4 since A∩C is the event that the first flip is H and the second is also H. By the
same reasoning B and C are also independent. On the other hand, A, B and C are not mutually independent.
For example, if we are given that A and B occurred, then the probability that C occurs is 1. So, even though
A, B and C are not mutually independent, every pair of them are independent. In other words, A, B and C
are pairwise independent but not mutually independent.

4.2 Intersections of Events
Computing intersections of independent events is easy; it follows from the definition. We simply multiply
the probabilities of each event. How do we compute intersections for events which may not be independent?
From the definition of conditional probability, we immediately have the following Product Rule (sometimes
also called the chain rule) for computing the probability of an intersection of events.

Theorem 14.1 (Product Rule). For any events A,B, we have

P[A∩B] = P[A]P[B|A].

More generally, for any events A1, . . . ,An,

P[
⋂n

i=1 Ai] = P[A1]×P[A2|A1]×P[A3|A1∩A2]×·· ·×P[An|
⋂n−1

i=1 Ai].

Proof. The first assertion follows directly from the definition of P[B|A] (and is in fact a special case of the
second assertion with n = 2).

To prove the second assertion, we will use induction on n (the number of events). The base case is n = 1,
and corresponds to the statement that P[A] = P[A], which is trivially true. For the inductive step, let n > 1
and assume (the inductive hypothesis) that

P[
⋂n−1

i=1 Ai] = P[A1]×P[A2|A1]×·· ·×P[An−1|
⋂n−2

i=1 Ai].

Now we can apply the definition of conditional probability to the two events An and
⋂n−1

i=1 Ai to deduce that

P[
⋂n

i=1 Ai] = P[An∩ (
⋂n−1

i=1 Ai)] = P[An|
⋂n−1

i=1 Ai]×P[
⋂n−1

i=1 Ai]

= P[An|
⋂n−1

i=1 Ai]×P[A1]×P[A2|A1]×·· ·×P[An−1|
⋂n−2

i=1 Ai],

where in the last line we have used the inductive hypothesis. This completes the proof by induction.

The Product Rule is particularly useful when we can view our sample space as a sequence of choices. The
next few examples illustrate this point.
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Example: Coin Tosses

Toss a fair coin three times. Let A be the event that all three tosses are heads. Then A = A1∩A2∩A3, where
Ai is the event that the ith toss comes up heads. We have

P[A] = P[A1]×P[A2|A1]×P[A3|A1∩A2]

= P[A1]×P[A2]×P[A3]

= 1
2 ×

1
2 ×

1
2 = 1

8 .

The second line here follows from the fact that the tosses are mutually independent. Of course, we already
know that P[A] = 1

8 from our definition of the probability space in Note 13. Another way of looking at this
calculation is that it justifies our definition of the probability space, and shows that it was consistent with
assuming that the coin flips are mutually independent.

If the coin is biased with heads probability p, we get, again using independence,

P[A] = P[A1]×P[A2]×P[A3] = p3.

More generally, the probability of any sequence of n tosses containing k heads and n−k tails is pk(1− p)n−k.
This is in fact the reason we defined the probability space this way: we defined the sample point probabilities
so that the coin tosses would behave independently.

Example: Monty Hall Revisited

Recall the Monty Hall problem from Note 13: there are three doors and the probability that the prize is
behind any given door is 1

3 . There are goats behind the other two doors. The contestant picks a door
randomly, and the host opens one of the other two doors, revealing a goat. How do we calculate intersections
in this setting? For example, what is the probability that the contestant chooses door 1, the prize is behind
door 2, and the host chooses door 3?

Let Ci be the event that the contestant chooses door i, let Pi be the event that the prize is behind door i, and
let Hi be the event that the host chooses door i. Then, by the Product Rule,

P[C1∩P2∩H3] = P[C1]×P[P2|C1]×P[H3|C1∩P2].

The probability of C1 is 1
3 , since the contestant is choosing the door at random. The probability of P2 given

C1 is still 1
3 since they are independent. The probability of the host choosing door 3 given events C1 and P2

is 1; the host cannot choose door 1 since the contestant has already chosen it, and the host cannot choose
door 2 since the host must reveal a goat (and not the prize). Therefore,

P[C1∩P2∩H3] =
1
3
× 1

3
×1 =

1
9
.

Observe that we did need conditional probability in this setting; had we simply multiplied the probabilities
of each event, we would have obtained 1

27 since the probability of H3 is also 1
3 (can you figure out why?).

What if we changed the situation, and instead asked for the probability that the contestant chooses door 1,
the prize is behind door 1, and the host chooses door 2? We can use the same technique as above, but our
final answer will be different. This is left as an exercise.

Now, noting that P[C1∩H3] = P[C1]P[H3|C1] =
1
3 ×

1
2 = 1

6 , we obtain

P[P2 |C1∩H3] =
P[C1∩P2∩H3]

P[C1∩H3]
=

1
9
1
6

=
2
3
,
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which formally justifies the intuitive answer described in Note 13.

Exercise. Show that P[P1 |C1∩H3] =
1
3 .

Example: Poker Hands

Let’s use the Product Rule to compute the probability of a flush in a different way. This is equal to 4×P[A],
where A is the probability of a Hearts flush. Intuitively, this should be clear since there are 4 suits; we’ll see
why this is formally true in the next section. We can write A =

⋂5
i=1 Ai, where Ai is the event that the ith

card we pick is a Heart. So we have

P[A] = P[A1]×P[A2|A1]×·· ·×P[A5|
⋂4

i=1 Ai].

Clearly P[A1] =
13
52 = 1

4 . What about P[A2|A1]? Well, since we are conditioning on A1 (the first card is a
Heart), there are only 51 remaining possibilities for the second card, 12 of which are Hearts. So P[A2|A1] =
12
51 . Similarly, P[A3|A1∩A2] =

11
50 , and so on. So we get

4×P[A] = 4× 13
52
× 12

51
× 11

50
× 10

49
× 9

48
,

which is exactly the same fraction we computed in Note 13.

So now we have two methods of computing probabilities in many of our sample spaces. It is useful to keep
these different methods around, both as a check on your answers and because in some cases one of the
methods is easier to use than the other.

4.3 Unions of Events
You are in Las Vegas, and you spy a new game with the following rules. You pick a number between 1
and 6. Then three dice are thrown. You win if and only if your number comes up on at least one of the dice.

The casino claims that your odds of winning are 50%, using the following argument. Let A be the event that
you win. We can write A = A1∪A2∪A3, where Ai is the event that your number comes up on die i. Clearly
P[Ai] =

1
6 for each i. Therefore,

P[A] = P[A1∪A2∪A3] = P[A1]+P[A2]+P[A3] = 3× 1
6
=

1
2
.

Is this calculation correct? Well, suppose instead that the casino rolled six dice, and again you win if and
only if your number comes up at least once. Then the analogous calculation would say that you win with
probability 6× 1

6 = 1, i.e., certainly! The situation becomes even more ridiculous when the number of dice
gets bigger than 6.

The problem is that the events Ai are not disjoint: i.e., there are some sample points that lie in more than one
of the Ai. (We could get really lucky and our number could come up on two of the dice, or all three.) So if
we add up the P[Ai] we are counting some sample points more than once.

Fortunately, there is a formula for this, known as the Principle of Inclusion-Exclusion:

Theorem 14.2 (Inclusion-Exclusion). Let A1, . . . ,An be events in some probability space, where n≥ 2. Then,
we have

P[
⋃n

i=1 Ai] =
n

∑
i=1

P[Ai]−∑
i< j

P[Ai∩A j]+ ∑
i< j<k

P[Ai∩A j ∩Ak]−·· ·+(−1)n−1P[A1∩A2∩·· ·∩An].
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That is, to compute P[
⋃

i Ai], we start by summing the event probabilities P[Ai], then we subtract the proba-
bilities of all pairwise intersections, then we add back in the probabilities of all three-way intersections, and
so on.

We will not prove the above inclusion-exclusion formula here; but you might like to verify it for the special
case n = 3 by drawing a Venn diagram and checking that every sample point in A1 ∪A2 ∪A3 is counted
exactly once by the formula. You might also like to prove the formula for general n by induction (in similar
fashion to the proof of the Product Rule above).

Taking the formula on faith, what is the probability we get lucky in the new game in Vegas?

P[A1∪A2∪A3] = P[A1]+P[A2]+P[A3]−P[A1∩A2]−P[A1∩A3]−P[A2∩A3]+P[A1∩A2∩A3].

Now the nice thing here is that the events Ai are mutually independent (the outcome of any die does not
depend on that of the others), so P[Ai ∩ A j] = P[Ai]P[A j] = (1

6)
2 = 1

36 , and similarly P[A1 ∩ A2 ∩ A3] =
(1

6)
3 = 1

216 . So we get

P[A1∪A2∪A3] =
(
3× 1

6

)
−
(
3× 1

36

)
+ 1

216 = 91
216 ≈ 0.42.

So your odds are quite a bit worse than the casino is claiming!

When n is large (i.e., we are interested in the union of many events), the Inclusion-Exclusion formula is
essentially useless because it involves computing the probability of the intersection of every non-empty
subset of the events: and there are 2n− 1 of these! Sometimes we can just look at the first few terms of it
and forget the rest: note that successive terms actually give us an overestimate and then an underestimate of
the answer, and these estimates both get better as we go along.

However, in many situations we can get a long way by just looking at the first term:

1. (Mutually exclusive events) If the events A1, . . . ,An are mutually exclusive (i.e., Ai∩A j = ∅ for all
i 6= j), then

P[
⋃n

i=1 Ai] =
n

∑
i=1

P[Ai].

[Note that we have already used this fact several times in our examples, e.g., in claiming that the
probability of a flush is four times the probability of a Hearts flush — clearly flushes in different suits
are disjoint events.]

2. (Union bound) It is always the case that

P[
⋃n

i=1 Ai]≤
n

∑
i=1

P[Ai].

This merely says that adding up the P[Ai] can only overestimate the probability of the union. Crude as
it may seem, we will later see how to use the union bound effectively in Computer Science examples.
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