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Random Variables: Covariance
In this note, we will cover covariance, which is a measure of how related two random variables are. Before
we can jump into covariance, we first discuss independent random variables, which have "no relation" to
each other; they have no covariance.

1 Sum of Independent Random Variables
One of the most important and useful facts about variance is that if a random variable X is the sum of
independent random variables X =X1+ · · ·+Xn, then its variance is the sum of the variances of the individual
r.v.’s. In particular, if the individual r.v.’s Xi are identically distributed (i.e., they have the same distribution),
then Var(X) = ∑

n
i=1 Var(Xi) = n ·Var(X1). This means that the standard deviation is σ(X) =

√
n ·σ(X1).

Note that by contrast, the expected value is E[X ] = n ·E[X1]. Intuitively this means that whereas the average
value of X grows proportionally to n, the spread of the distribution grows proportionally to

√
n, which is

much smaller than n. In other words the distribution of X tends to concentrate around its mean.

Let us now formalize these ideas. First, we have the following result which states that the expected value of
the product of two independent random variables is equal to the product of their expected values.

Theorem 16.1. For independent random variables X ,Y , we have E[XY ] = E[X ]E[Y ].

Proof. We have

E[XY ] = ∑
a

∑
b

ab×P[X = a,Y = b]

= ∑
a

∑
b

ab×P[X = a]×P[Y = b]

=

(
∑
a

a×P[X = a]
)
×
(

∑
b

b×P[Y = b]
)

= E[X ]×E[Y ],

as required. In the second line here we made crucial use of independence.

We now use the above theorem to conclude the nice property that the variance of the sum of independent
random variables is equal to the sum of their variances.

Theorem 16.2. For independent random variables X ,Y , we have

Var(X +Y ) = Var(X)+Var(Y ).

CS 70, Summer 2019, Note 16 1



Proof. From the alternative formula for variance in Theorem ?? and linearity of expectation, we have

Var(X +Y ) = E
[
(X +Y )2]− (E[X +Y ])2

= E
[
X2]+E

[
Y 2]+2E[XY ]− (E[X ]+E[Y ])2

= (E
[
X2]−E[X ]2)+(E

[
Y 2]−E[Y ]2)+2(E[XY ]−E[X ]E[Y ])

= Var(X)+Var(Y )+2(E[XY ]−E[X ]E[Y ]).

Since X ,Y are independent, Theorem 16.1 implies that the final term in this expression is zero.

It is very important to remember that neither of the above two results is true in general when X ,Y are not
independent. As a simple example, note that even for a {0,1}-valued r.v. X with P[X = 1] = p, E

[
X2
]
= p

is not equal to E[X ]2 = p2 (because of course X and X are not independent!). This is in contrast to linearity
of expectation, where we saw that the expectation of a sum of r.v.’s is the sum of the expectations of the
individual r.v.’s, regardless of whether or not the r.v.’s are independent.

Example

Let us return to our motivating example of a sequence of n coin tosses. Let Xn denote the number of
Heads in n tosses of a biased coin with Heads probability p (i.e., Xn ∼ Binomial(n, p)). As usual, we write
Xn = I1 + I2 + · · ·+ In, where Ii = 1 if the i-th toss is H, and Ii = 0 otherwise.

We already know E[Xn] = ∑
n
i=1E[Ii] = np. We can compute Var(Ii) = E

[
I2
i
]
−E[Ii]

2 = p− p2 = p(1− p).
Since the Ii’s are independent, by Theorem 16.2 we get Var(Xn) = ∑

n
i=1 Var(Ii) = np(1− p).

As an example, for a fair coin (p = 1
2 ) the expected number of Heads in n tosses is n

2 , and the standard
deviation is

√n
4 =

√
n

2 . Note that since the maximum number of Heads is n, the standard deviation is much
less than this maximum number for large n. This is in contrast to the previous example of the uniformly

distributed random variable (??), where the standard deviation σ(X) =
√

n2−1
12 ≈ n√

12
(for large n) is

of the same order as the largest value, n. In this sense, the spread of a binomially distributed r.v. is much
smaller than that of a uniformly distributed r.v.

2 Covariance and Correlation
The expression E[XY ]−E[X ]E[Y ] in the proof of Theorem 16.2 is a measure of association between X ,Y ,
and is called the covariance:

Definition 16.1 (Covariance). The covariance of random variables X and Y , denoted Cov(X ,Y ), is defined
as

Cov(X ,Y ) = E[(X−µX)(Y −µY )] = E[XY ]−E[X ]E[Y ],

where µX = E[X ] and µY = E[Y ].

Remarks. We note some important facts about covariance.

1. If X ,Y are independent, then Cov(X ,Y ) = 0. However, the converse is not true.

2. Cov(X ,X) = Var(X).
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3. Covariance is bilinear; i.e., for any collection of random variables {X1, . . . ,Xn},{Y1, . . . ,Ym} and fixed
constants {a1 . . . ,an},{b1, . . . ,bm},

Cov(∑n
i=1 aiXi,∑

m
j=1 b jYj) = ∑

n
i=1 ∑

m
j=1 aib jCov(Xi,Yj).

For general random variables X and Y ,

Var(X +Y ) = Var(X)+Var(Y )+2Cov(X ,Y ).

While the sign of Cov(X ,Y ) is informative of how X and Y are associated, its magnitude is difficult to
interpret. A statistic that is easier to interpret is correlation:

Definition 16.2 (Correlation). Suppose X and Y are random variables with σ(X)> 0 and σ(Y )> 0. Then,
the correlation of X and Y is defined as

Corr(X ,Y ) =
Cov(X ,Y )
σ(X)σ(Y )

.

Correlation is more useful than covariance because the former always ranges between −1 and +1, as the
following theorem shows:

Theorem 16.3. For any pair of random variables X and Y with σ(X)> 0 and σ(Y )> 0,

−1≤ Corr(X ,Y )≤+1.

Proof. Let E[X ] = µX and E[Y ] = µY , and define X̃ = (X − µX)/σ(X) and Ỹ = (Y − µY )/σ(Y ). Then,
E[X̃2] = E[Ỹ 2] = 1, so

0≤ E[(X̃− Ỹ )2] = E[X̃2]+E[Ỹ 2]−2E[X̃Ỹ ] = 2−2E[X̃Ỹ ]

0≤ E[(X̃ + Ỹ )2] = E[X̃2]+E[Ỹ 2]+2E[X̃Ỹ ] = 2+2E[X̃Ỹ ],

which implies −1≤ E[X̃Ỹ ]≤+1. Now, noting that E[X̃ ] = E[Ỹ ] = 0, we obtain Corr(X ,Y ) = Cov(X̃ ,Ỹ ) =
E[X̃Ỹ ]. Hence, −1≤ Corr(X ,Y )≤+1.

Note that the above proof shows that Corr(X ,Y ) = +1 if and only if E[(X̃− Ỹ )2] = 0, which implies X̃ = Ỹ
with probability 1. Similarly, Corr(X ,Y ) =−1 if and only if E[(X̃ + Ỹ )2] = 0, which implies X̃ =−Ỹ with
probability 1. In terms of the original random variables X ,Y , this means the following: if Corr(X ,Y ) =±1,
then there exist constants a and b such that, with probability 1,

Y = aX +b,

where a > 0 if Corr(X ,Y ) = +1 and a < 0 if Corr(X ,Y ) =−1.
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