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Random Variables: Variance
We have seen in the previous note that if we take a biased coin that shows heads with probability p and toss
it n times, then the expected number of heads is np. What this means is that if we repeat the experiment
multiple times, where in each experiment we toss the coin n times, then on average we get np heads. But in
any single experiment, the number of heads observed can be any value between 0 and n. What can we say
about how far off we are from the expected value? That is, what is the typical deviation of the number of
heads from np?

1 Random Walk
Let us consider a simpler setting that is equivalent to tossing a fair coin n times, but is more amenable to
analysis. Suppose we have a particle that starts at position 0 and performs a random walk in one dimension.
At each time step, the particle moves either one step to the right or one step to the left with equal probability
(this kind of random walk is called symmetric), and the move at each time step is independent of all other
moves. We think of these random moves as taking place according to whether a fair coin comes up heads or
tails. The expected position of the particle after n moves is back at 0, but how far from 0 should we typically
expect the particle to end up?

Denoting a right-move by +1 and a left-move by −1, we can describe the probability space here as the set
of all sequences of length n over the alphabet {±1}, each having equal probability 1

2n . Let the r.v. Sn denote
the position of the particle (relative to our starting point 0) after n moves. Thus, we can write

Sn = X1 +X2 + · · ·+Xn, (1)

where Xi =+1 if the i-th move is to the right and Xi =−1 if the move is to the left.

The expectation of Sn can be easily computed as follows. Since E[Xi] = (1
2 ×1)+(1

2 × (−1)) = 0, applying
linearity of expectation immediately gives E[Sn] = ∑

n
i=1E[Xi] = 0. But of course this is not very informative,

and is due to the fact that positive and negative deviations from 0 cancel out.

What we are really asking is: What is the expected value of |Sn|, the distance of the particle from 0? Rather
than consider the r.v. |Sn|, which is a little difficult to work with due to the absolute value operator, we will
instead look at the r.v. S2

n. Notice that this also has the effect of making all deviations from 0 positive, so
it should also give a good measure of the distance from 0. However, because it is the squared distance, we
will need to take a square root at the end.

We will now show that the expected square distance after n steps is equal to n:

Claim 16.1. For the random variable Sn defined in (1), we have E
[
S2

n
]
= n.

Proof. We use the expression (1) and expand the square:

E
[
S2

n
]
= E

[
(X1 +X2 + · · ·+Xn)

2]= E

[
n

∑
i=1

X2
i +2∑

i< j
XiX j

]
=

n

∑
i=1

E
[
X2

i
]
+2∑

i< j
E[XiX j]. (2)
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In the last equality we have used linearity of expectation. To proceed, we need to compute E
[
X2

i
]

and
E[XiX j] for i 6= j. Since Xi can take on only values ±1, clearly X2

i = 1 always, so E
[
X2

i
]
= 1. To compute

E[XiX j] for i 6= j, note XiX j =+1 when Xi = X j =+1 or Xi = X j =−1, and otherwise XiX j =−1. Therefore,

P[XiX j = 1] = P[(Xi = X j =+1)∨ (Xi = X j =−1)]

= P[Xi = X j =+1] + P[Xi = X j =−1]

= P[Xi =+1]×P[X j =+1] + P[Xi =−1]×P[X j =−1]

= 1
4 +

1
4 = 1

2 ,

where the second equality follows from the fact that the events Xi = X j =+1 and Xi = X j =−1 are mutually
exclusive, while the third equality follows from the independence of the events Xi = +1 and X j = +1, and
likewise for the events Xi = −1 and X j = −1. In a similar vein, one obtains P[XiX j = −1] = 1

2 , and hence
E[XiX j] = 0.

Finally, plugging E
[
X2

i
]
= 1 and E[XiX j] = 0, for i 6= j, into (2) gives E

[
S2

n
]
= ∑

n
i=1 1+ 2∑i< j 0 = n, as

desired.

So, for the symmetric random walk example, we see that the expected squared distance from 0 is n. One
interpretation of this is that we might expect to be a distance of about

√
n away from 0 after n steps. However,

we have to be careful here: we cannot simply argue that E[|Sn|] =
√

E[S2
n] =
√

n. (Why not?) We will see
later in the course how to make precise deductions about |Sn| from knowledge of E

[
S2

n
]
. For the moment,

however, let us agree to view E
[
S2

n
]

as an intuitive measure of “spread” of the r.v. Sn.

For a more general r.v. X with expectation E[X ] = µ , what we are really interested in is E
[
(X−µ)2

]
,

the expected squared distance from the mean. In our symmetric random walk example, we had µ = 0, so
E
[
(X−µ)2

]
just reduced to E

[
X2
]
.

Definition 16.1 (Variance). For a r.v. X with expectation E[X ] = µ , the variance of X is defined to be

Var(X) = E
[
(X−µ)2].

The square root σ(X) :=
√

Var(X) is called the standard deviation of X.

The point of taking the square root of variance is to put the standard deviation “on the same scale” as the r.v.
itself. Since the variance and standard deviation differ just by a square, it really doesn’t matter which one we
choose to work with as we can always compute one from the other. We shall usually use the variance. For
the random walk example above, we have that Var(Sn) = n, and the standard deviation σ(Sn) of X is

√
n.

The following observation provides a slightly different way to compute the variance, which sometimes turns
out to be simpler.

Theorem 16.1. For a r.v. X with expectation E[X ] = µ , we have Var(X) = E
[
X2
]
−µ2.

Proof. From the definition of variance, we have

Var(X) = E
[
(X−µ)2]= E

[
X2−2µX +µ

2]= E
[
X2]−2µ E[X ]+µ

2 = E
[
X2]−µ

2.

In the third equality, we used linearity of expectation. We also used the fact that since µ =E[X ] is a constant,
E[µX ] = µ E[X ] = µ2 and E

[
µ2
]
= µ2.

Another important property that will come in handy is the following: For any random variable X and con-
stant c, we have

Var(cX) = c2Var(X).

The proof is simple and left as an exercise.

CS 70, Summer 2019, Note 16 2



2 Variance Computation
Let us see some examples of variance calculations.

1. Fair die. Let X be the score on the roll of a single fair die. Recall from the previous note that E[X ] = 7
2 .

So we just need to compute E
[
X2
]
, which is a routine calculation:

E
[
X2]= 1

6
(
12 +22 +32 +42 +52 +62)= 91

6
.

Thus, from Theorem 16.1,

Var(X) = E
[
X2]− (E[X ])2 =

91
6
− 49

4
=

35
12

.

2. Uniform distribution. More generally, if X is a uniform random variable on the set {1, . . . ,n}, so X
takes on values 1, . . . ,n with equal probability 1

n , then the mean, variance and standard deviation of X
are given by:

E[X ] =
n+1

2
, Var(X) =

n2−1
12

, σ(X) =

√
n2−1

12
. (3)

You should verify these as an exercise.

3. Fixed points of permutations. Let Xn be the number of fixed points in a random permutation of n
items (i.e., in the homework permutation example, Xn is the number of students in a class of size n who
receive their own homework after shuffling). We saw in the previous note that E[Xn] = 1, regardless
of n. To compute E

[
X2

n
]
, write Xn = I1 + I2 + · · ·+ In, where Ii = 1 if i is a fixed point, and Ii = 0

otherwise. Then as usual we have

E
[
X2

n
]
=

n

∑
i=1

E
[
I2
i
]
+2∑

i< j
E[IiI j]. (4)

Since Ii is an indicator r.v., we have that E
[
I2
i
]
= P[Ii = 1] = 1

n . For i < j, since both Ii and I j are
indicators, we can compute E[IiI j] as follows:

E[IiI j] = P[IiI j = 1] = P[Ii = 1∧ I j = 1] = P[both i and j are fixed points] =
1

n(n−1)
.

Make sure that you understand the last step here. Plugging this into equation (4) we get

E
[
X2

n
]
=

n

∑
i=1

1
n
+2∑

i< j

1
n(n−1)

=

(
n× 1

n

)
+

[
2
(

n
2

)
× 1

n(n−1)

]
= 1+1 = 2.

Thus, Var(Xn) = E
[
X2

n
]
− (E[Xn])

2 = 2− 1 = 1. That is, the variance and the mean are both equal
to 1. Like the mean, the variance is also independent of n. Intuitively at least, this means that it is
unlikely that there will be more than a small number of fixed points even when the number of items,
n, is very large.
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2.1 Variance of a Geometric Random Variable [PROOF OPTIONAL]

Let us now compute the variance of X .

Theorem 16.2. For X ∼ Geometric(p), we have Var(X) = 1−p
p2 .

Proof. We will show that E[X(X−1)] = 2(1−p)
p2 . Since we already know E[X ] = 1

p , this will imply the
desired result:

Var(X) = E
[
X2]− (E[X ])2 = E[X(X−1)]+E[X ]− (E[X ])2

=
2(1− p)

p2 +
1
p
− 1

p2 =
2(1− p)+ p−1

p2 =
1− p

p2 .

Now to show E[X(X−1)] = 2(1−p)
p2 , we begin with the following identity of geometric series:

∞

∑
i=0

(1− p)i =
1
p
.

Differentiating the identity above with respect to p yields (the i = 0 term is equal to 0 so we omit it):

−
∞

∑
i=1

i(1− p)i−1 =− 1
p2 .

Differentiating both sides with respect to p again gives us (the i = 1 term is equal to 0 so we omit it):

∞

∑
i=2

i(i−1)(1− p)i−2 =
2
p3 . (5)

Now using the geometric distribution of X and identity (5), we can calculate:

E[X(X−1)] =
∞

∑
i=1

i(i−1)×P[X = i]

=
∞

∑
i=2

i(i−1)(1− p)i−1 p (the i = 1 term is equal to 0 so we omit it)

= p(1− p)
∞

∑
i=2

i(i−1)(1− p)i−2

= p(1− p)× 2
p3 (using identity (5))

=
2(1− p)

p2 ,

as desired.

2.2 Variance of a Poisson Random Variable [PROOF OPTIONAL]

Theorem 16.3. For X ∼ Poisson(λ ), we have Var(X) = λ .
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Proof. Similarly, we can calculate E[X(X−1)] as follows:

E[X(X−1)] =
∞

∑
i=0

i(i−1)×P[X = i]

=
∞

∑
i=2

i(i−1)
λ i

i!
e−λ (the i = 0 and i = 1 terms are equal to 0 so we omit them)

= λ
2e−λ

∞

∑
i=2

λ i−2

(i−2)!

= λ
2e−λ eλ (since eλ = ∑

∞
j=0

λ j

j! with j = i−2)

= λ
2.

Therefore,

Var(X) = E
[
X2]−E[X ]2 = E[X(X−1)]+E[X ]−E[X ]2 = λ

2 +λ −λ
2 = λ ,

as desired.
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