
CS 70 Discrete Mathematics and Probability Theory
Summer 2019 Course Notes Note 17

Two Killer Applications: Hashing and Load Balancing
In this note, we will see that the simple balls-and-bins process can be used to model a surprising range of
phenomena. Recall that in this process we distribute k balls into n bins, where each ball is independently
placed in a uniformly random bin. We can ask questions such as:

• How large can we choose k while ensuring that with probability at least 1/2, no two balls land in the
same bin?

• If k = n, what is the maximum number of balls that are likely to land in the same bin?

As we shall see, these two simple questions provide important insights into two important computer science
applications: hashing and load balancing. Our answers to these two questions are based on the application
of a simple technique called the union bound, discussed in Note 14. Given any two events A and B, it states
that P[A∪B]≤ P[A]+P[B].

1 Hashing
One of the basic issues in hashing is the tradeoff between the size of the hash table and the number of
collisions. Here is a simple question that quantifies the tradeoff:

• Suppose a hash function distributes keys evenly over a table of size n. How many keys can we hash
before the probability of a collision exceeds (say) 1

2 ?

Recall that a hash table is a data structure that supports the storage of a set of keys drawn from a large
universe U (say, the names of all 250m people in the US). The set of keys to be stored changes over time,
and so the data structure allows keys to be added and deleted quickly. It also rapidly answers, given a key,
whether it is an element in the currently stored set. The crucial question is how large must the hash table be
to allow these operations (addition, deletion and membership) to be implemented quickly.

Here is how the hashing works. The hash function h maps U to a table T of modest size. To ADD a key x
to our set, we evaluate h(x) (i.e., apply the hash function to the key) and store x at the location h(x) in the
table T . All keys in our set that are mapped to the same table location are stored in a simple linked list. The
operations DELETE and MEMBER are implemented in similar fashion, by evaluating h(x) and searching the
linked list at h(x). Note that the efficiency of a hash function depends on having only few collisions — i.e.,
keys that map to the same location. This is because the search time for DELETE and MEMBER operations is
proportional to the length of the corresponding linked list.

Of course, we could be unlucky and choose keys such that our hash function maps many of them to the same
location in the table. But the whole idea behind hashing is that we select our hash function carefully, so that
it scrambles up the input key and seems to map it to a random location in the table, making it unlikely that
most of the keys we select are mapped to the same location. To quantitatively understand this phenomenon,

CS 70, Summer 2019, Note 17 1

we will model our hash function as a random function - one that maps each key to a uniformly random
location in the table, independently of where all other keys are mapped. The question we will answer is the
following: what is the largest number m of keys we can store before the probability of a collision reaches 1

2 ?
Note that there is nothing special about 1

2 . One can ask, and answer, the same question with different values
of collision probability, and the largest number of keys m will change accordingly.

1.1 Balls and Bins
Let us begin by seeing how this problem can be put into the balls-and-bins framework. The balls will be the
m keys to be stored, and the bins will be the n locations in the hash table T . Since the hash function maps
each key to a random location in the table T , we can see each key (ball) as choosing a hash table location
(bin) uniformly from T , independently of all other keys. Thus the probability space corresponding to this
hashing experiment is exactly the same as the balls-and-bins space.

We are interested in the event A that there is no collision, or equivalently, that all m balls land in different
bins. Clearly P[A] will decrease as m increases (with n fixed). Our goal is to find the largest value of m such
that P[A] ≥ 1− ε , where ε ∈ (0,1) is a specified tolerance level of collison probability. [Note: Really we
are looking at different sample spaces here, one for each value of m. So it would be more correct to write
Pm rather than just P, to make clear which sample space we are talking about. However, we will omit this
detail.]

1.2 Using the Union Bound
Let us see how to use the union bound to achieve this goal. We will fix the value of m and try to compute
P[A]. There are exactly

(m
2

)
= m(m−1)

2 possible pairs among our m keys. Imagine these are numbered from 1
to
(m

2

)
(it does not matter how). Let Ci denote the event that pair i has a collision (i.e., both keys in the pair

are hashed to the same location). Then the event A that some collision occurs can be written A =
⋃(m

2)
i=1 Ci.

What is P[Ci]? We claim it is just 1
n for every i; this is just the probability that two particular balls land in

the same bin when there are n bins.

So, using the union bound from Note 14, we have

P[A] = P[∪(
m
2)

i=1Ci]≤
(m

2)

∑
i=1

P[Ci] =

(
m
2

)
× 1

n
=

m(m−1)
2n

≈ m2

2n
.

This means that the probability of having a collision is less than ε if m2

2n ≤ ε; that is, if m ≤
√

2εn. (For
ε = 1

2 , this just says m≤
√

n.) Thus, if we wish to suffer no collisions with high probability, the size of the
hash table must be about the square of the cardinality of the set we are trying to store. We will see in the
next section on load balancing that the number of collisions does not increase dramatically as we decrease
the size of the hash table and make it comparable to the size of the set we are trying to store.

As detailed in Section 1.4, it turns out that we can derive a slightly less restrictive bound for m using other
techniques from the past several lectures. Although this alternate bound is a little better, both bounds are the
same in terms of dependence on n (both are of the form m = O(

√
n)).

1.3 The Birthday Paradox Revisited
Can we do better than the m = O(

√
n) dependence on n? It turns out that the answer is no, and this is related

to the birthday paradox phenomenon discussed in Note 13, which we now review. Suppose there are 23

CS 70, Summer 2019, Note 17 2

students in class. What is the chance that at least two of them have the same birthday? Naively one might
answer that since there are 365 days in the year, the chance should be roughly 23

365 ∼ 6%. The correct answer
is over 50%!

Suppose there are m people in the room, and let A denote the event that “at least two people have the same
birthday,” and let A denote the event that “no two people have the same birthday.” It turns out it is easier to
calculate P[A], and then P[A] = 1−P[A]. Our sample space is of cardinality |Ω| = 365m. The number of
sample points such that no two people to have the same birthday can be calculated as follows: there are 365
choices for the first person, 364 for the second, . . . , 365−m+ 1 choices for the m-th person, for a total of
365×364×·· ·× (365−m+1). Thus,

P[A] =
|A|
|Ω|

=
365×364×·· ·× (365−m+1)

365m ,

and P[A] = 1− 365×364×···×(365−m+1)
365m . Substituting m= 23, we can check that P[A] is over 50%. With m= 60,

P[A] is larger than 99%!

The hashing problem we considered above is closely related to the birthday problem. Indeed, the birthday
problem is the special case of the hashing problem with 365 bins. The m = 23 solution to the birthday
problem can be seen as m being roughly

√
365.

1.4 A More Accurate Bound
In this section, we derive a more accurate bound on m.

Main Idea

Let’s fix the value of m and try to compute P[A]. Since our probability space is uniform (each outcome has
probability 1

nm), it’s enough just to count the number of outcomes in A. In how many ways can we arrange m
balls in n bins so that no bin contains more than one ball? Well, this is just the number of ways of choosing
m things out of n without replacement, which as we saw in Note 12 is

n× (n−1)× (n−2)×·· ·× (n−m+2)× (n−m+1).

This formula is valid as long as m ≤ n: if m > n then clearly the answer is zero. From now on, we will
assume that m≤ n.

Now we can calculate the probability of no collision:

P[A] =
n(n−1)(n−2) . . .(n−m+1)

nm

=
n
n
× n−1

n
× n−2

n
×·· ·× n−m+1

n

=
(

1− 1
n

)
×
(

1− 2
n

)
×·· ·×

(
1− m−1

n

)
. (1)

Before going on, let’s pause to observe that we could compute P[A] in a different way, as follows. View the
probability space as a sequence of choices, one for each ball. For 1 ≤ i ≤ m, let Ai be the event that the ith

CS 70, Summer 2019, Note 17 3

ball lands in a different bin from balls 1,2, . . . , i−1. Then

P[A] = P[
⋂n

i=1 Ai] = P[A1]×P[A2|A1]×P[A3|A1∩A2]×·· ·×P[Am|
⋂m−1

i=1 Ai]

= 1× n−1
n
× n−2

n
×·· ·× n−m+1

n

=
(

1− 1
n

)
×
(

1− 2
n

)
×·· ·×

(
1− m−1

n

)
.

Fortunately, we get the same answer as before! [You should make sure you see how we obtained the
conditional probabilities in the second line above. For example, P[A3|A1 ∩A2] is the probability that the
third ball lands in a different bin from the first two balls, given that those two balls also landed in different
bins. This means that the third ball has n−2 possible bin choices out of a total of n.]

Essentially, we are now done with our problem: Equation (1) gives an exact formula for the probability of
no collision when m keys are hashed. All we need to do now is plug values m = 1,2,3, . . . into (1) until we
find that P[A] drops below 1− ε . The corresponding value of m (minus 1) is what we want.

We can actually make this bound much more useful by turning it around, as we will do below. We will
derive an equation which tells us the value of m at which P[A] drops below 1− ε .

Further Simplification

The bound we gave above (for the largest number m of keys we can store before the probability of a collision
reaches 1

2) is not really satisfactory: it would be much more useful to have a formula that gives the “critical”
value of m directly, rather than having to compute P[A] for m = 1,2,3, Note that we would have to do
this computation separately for each different value of n we are interested in: i.e., whenever we change the
size of our hash table.

So what remains is to “turn Equation (1) around”, so that it tells us the value of m at which P[A] drops
below 1

2 . To do this, let’s take logs: this is a good thing to do because it turns the product into a sum, which
is easier to handle. We get

ln(P[A]) = ln
(

1− 1
n

)
+ ln

(
1− 2

n

)
+ · · ·+ ln

(
1− m−1

n

)
, (2)

where “ln” denotes natural (base e) logarithm. Now we can make use of a standard approximation for
logarithms: namely, if x is small then ln(1− x)≈−x. This comes from the Taylor series expansion

ln(1− x) =−x− x2

2
− x3

3
−·· · .

So by replacing ln(1−x) by−x we are making an error of at most (x2

2 + x3

3 + · · ·), which is at most 2x2 when
x≤ 1

2 . In other words, we have
−x≥ ln(1− x)≥−x−2x2.

And if x is small then the error term 2x2 will be much smaller than the main term −x. Rather than carry
around the error term 2x2 everywhere, in what follows we will just write ln(1− x) ≈ −x, secure in the
knowledge that we could make this approximation precise if necessary.

CS 70, Summer 2019, Note 17 4

Now let’s plug this approximation into Equation (2):

ln(P[A]) ≈ −1
n
− 2

n
− 3

n
−·· ·− m−1

n

= −1
n

m−1

∑
i=1

i

= −m(m−1)
2n

≈ −m2

2n
. (3)

Note that we have used the approximation for ln(1− x) with x = 1
n ,

2
n ,

3
n , . . . ,

m−1
n . So our approximation

should be good provided all these are small, i.e., provided n is fairly big and m is quite a bit smaller than n.
Once we are done, we will see that the approximation is actually pretty good even for modest sizes of n.

Now we can undo the logs in (3) to get our expression for P[A]:

P[A]≈ e−
m2
2n .

The final step is to figure out for what value of m this probability becomes 1− ε . So we want the largest m

such that e−
m2
2n ≥ 1− ε . This means we must have

−m2

2n
≥ ln(1− ε) =− ln

(
1

1− ε

)
,

or equivalently

m ≤

√
2ln
(

1
1− ε

)
×
√

n. (4)

For ε = 1
2 , the coefficient in front of

√
n is ≈ 1.177. So the bottom line is that we can hash approximately

m = b1.177
√

nc keys before the probability of a collision reaches 1
2 . Recall that our calculation was only

approximate; so we should go back and get a feel for how much error we made. We can do this by using
Equation (1) to compute the exact value m = m0 at which P[A] drops below 1

2 , for a few sample values of n.
Then we can compare these values with our estimate m≈ 1.177

√
n:

n 10 20 50 100 200 365 500 1000 104 105 106

1.177
√

n 3.7 5.3 8.3 11.8 16.6 22.5 26.3 37.3 118 372 1177
exact m0 4 5 8 12 16 22 26 37 118 372 1177

From the table, we see that our approximation is very good even for small values of n. When n is large, the
error in the approximation becomes negligible.

If instead we were interested in keeping the collision probability below (say) ε = 1
20 (i.e., 5%), Equation (4)

implies that we could hash at most m =
√

(2ln(20/19))n ≈ 0.32
√

n keys. Of course, this number is a bit
smaller than 1.177

√
n because our collision probability is now smaller. But no matter what “confidence”

probability we specify, our critical value of m will always be c
√

n for some constant c (which depends on
the confidence).

CS 70, Summer 2019, Note 17 5

2 Load Balancing
An important practical issue in distributed computing is how to spread the workload in a distributed system
among its processors. Here we investigate an extremely simple scenario that is both fundamental in its own
right and also establishes a baseline against which more sophisticated methods should be judged.

Suppose we have m identical jobs and n identical processors. Our task is to assign the jobs to the processors
in such a way that no processor is too heavily loaded. Of course, there is a simple optimal solution here: just
divide up the jobs as evenly as possible, so that each processor receives either dm

n e or bm
n c jobs. However, this

solution requires a lot of centralized control, and/or a lot of communication: the workload has to be balanced
evenly either by a powerful centralized scheduler that talks to all the processors, or by the exchange of many
messages between jobs and processors. This kind of operation is very costly in most distributed systems.
The question therefore is: What can we do with little or no overhead in scheduling and communication cost?

2.1 Back to Balls and Bins
The first idea that comes to mind here is. . . balls and bins! In other words, each job simply selects a processor
uniformly at random and independently of all others, and goes to that processor. (Make sure you believe that
the probability space for this experiment is the same as the one for balls and bins.) This scheme requires no
communication. However, presumably it will not in general achieve an optimal balancing of the load. Let
Ak be the event that the load of some processor is at least k. As designers or users of this load balancing
scheme, here’s one question we might care about:

Question: Find the smallest value k such that P[Ak]≤ 1
2 .

If we have such a value k, then we will know that, with high probability (at least 1
2), every processor in our

system will have a load at most k. This will give us a good idea about the performance of the system. Of
course, as with our hashing application, there’s nothing special about the value 1

2 ; we are just using this for
illustration. Essentially the same analysis can be used to find k such that P[Ak]≤ 0.05 (i.e., 95% confidence),
or any other value we like. Indeed, we can even find the k’s for several different confidence levels and thus
build up a more detailed picture of the behavior of the scheme. To simplify our problem, we will also assume
from now on that m = n (i.e., the number of jobs is the same as the number of processors). With a bit more
work, we could generalize our analysis to other values of m.

2.2 Applying the Union Bound
From hashing application, we know that we get collisions with high probability already when m≈ 1.177

√
n.

So, when m = n, the maximum load will certainly be larger than 1 (with high probability). But how large
will it be? If we try to analyze the maximum load directly, we run into the problem that it depends on the
number of jobs at every processor (or equivalently, the number of balls in every bin). Since the load in one
bin depends on those in the others, this becomes very tricky. Instead, what we will do is analyze the load
in any one bin, say bin 1; this will be fairly easy. Let Ak(1) be the event that the load in bin 1 is at least k.
What we will do is to find the smallest k such that

P[Ak(1)]≤
1
2n

. (5)

Since all the bins are identical, we will then know that, for the same k,

P[Ak(i)]≤
1

2n
, for i = 1,2, . . . ,n,

CS 70, Summer 2019, Note 17 6

where Ak(i) is the event that the load in bin i is at least k. But now, since the event Ak is exactly the union of
the events Ak(i) (do you see why?), we can use the union bound from Note 14:

P[Ak] = P[
⋃n

i=1 Ak(i)]≤
n

∑
i=1

P[Ak(i)]≤ n× 1
2n

=
1
2
.

It is worth standing back to notice what we did here: we wanted to conclude that P[Ak] ≤ 1
2 . We could not

analyze Ak directly, but we knew that Ak =
⋃n

i=1 Ak(i), for much simpler events Ak(i). Since there are n
events Ak(1), . . . ,Ak(n), and all have the same probability, it is enough for us to show that P[Ak(i)] ≤ 1

2n ;
the union bound then guarantees that P[Ak] ≤ 1

2 . This kind of reasoning is very common in applications of
probability in Computer Science.

Now all that is left to do is to find the smallest k that satisfies (5). That is, we wish to bound the probability
that bin 1 has at least k balls (and find the smallest value of k so that this probability is smaller than 1

2n). We
start by observing that for the event Ak(1) to occur (that bin 1 has at least k balls), there must be some subset
S of exactly k balls such that all balls in S ended up in bin 1. We can say this more formally as follows: for a
subset S (where |S|= k), let BS be the event that all balls in S land in bin 1. Then the event Ak(1) is a subset
of the event ∪SBS (where the union is over all sets S of cardinality k). It follows that:

P[Ak(1)]≤ P[∪SBS]

We can use the union bound on P[∪SBS]:

P[∪SBS]≤∑
S
P[BS]

There are
(n

k

)
sets we are summing over, and for each set S, P[BS] is simple: it is just the probability that

k balls land in bin 1, or 1
nk . Using these observations and the above equations, we can compute an upper

bound on P[Ak(1)]:

P[Ak(1)]≤
(

n
k

)
1
nk .

Hence, to achieve our original goal of satisfying (5), we need to find the smallest k so that
(n

k

) 1
nk ≤ 1

2n . First
note that (

n
k

)
1
nk =

n(n−1) · · ·(n− k+1)
k!

1
nk ≤

1
k!
,

so
(n

k

) 1
nk ≤ 1

2n if 1
k! ≤

1
2n . Using Stirling’s approximation lnk! ≈ k lnk− k for large k, we conclude that

lnk!≈ ln2n if k is chosen to be
k ≈ lnn

ln lnn
,

for large n.

Finally, here is one punchline from load balancing application. Let’s say the total US population is about
350 million. Suppose we mail 350 million items of junk mail, each one with a random US address. Then
with probability at least 1

2 , no one person anywhere will receive more than about a dozen items!

CS 70, Summer 2019, Note 17 7

