
CS 70 Discrete Mathematics and Probability Theory
Spring 2019 Course Notes Note 21

Finite Markov Chains
This note concerns the theory of finite Markov chains. For CS70, we do not cover the proofs discussed in
Appendix B.

Markov chains are models of random motion in a finite or countable set. These models are powerful because
they capture a vast array of systems that we encounter in applications. Yet, the models are simple in that
many of their properties can often be determined using elementary matrix algebra. In this course, we limit
the discussion to the case of finite Markov chains, i.e., motions in a finite set.

Imagine the following scenario. You flip a fair coin until you get two consecutive ‘heads’. How many times
do you have to flip the coin, on average? You roll a balanced six-sided die until the sum of the last two rolls
is 8. How many times do you have to roll the die, on average?

As another example, say that you play a game of ‘heads or tails’ using a biased coin that yields ‘heads’ with
probability 0.48. You start with $10. At each step, if the flip yields ‘heads’, you earn $1. Otherwise, you
lose $1. What is the probability that you reach $100 before $0? How long does it take until you reach either
$100 or $0?

You try to go up a ladder that has 20 rungs. At each time step, you succeed in going up by one rung with
probability 0.9. Otherwise, you fall back to the ground. How many time steps does it take you to reach the
top of the ladder, on average?

You look at a web page, then select randomly one of the links on that page, with equal probabilities. You
then repeat on the next page you visit, and so on. As you keep browsing the web in that way, what fraction
of the time do you open a given page? How long does it take until you reach a particular page? How likely
is it that you visit a given page before another given page?

These questions can be answered using the methods of Markov chains, as we explain in this note.

1 Examples
We begin with a couple of concrete examples to illustrate the key concepts underlying Markov chains.

1.1 Symmetric Two-State Markov Chain
Figure 1 illustrates a simple Markov chain. It describes a random motion over the set {0,1}. The position
at time n is Xn ∈ {0,1}, where n ∈ N. We call Xn the state of the Markov chain at step (or time) n. The set
{0,1} is the state space, i.e., the set of possible values of the state. The motion (i.e., the time evolution) of
Xn is governed by the following rules. One is given a number a ∈ [0,1] and a row vector µµµ(0) = (µ

(0)
0 ,µ

(0)
1 ),

where µ
(0)
0 and µ

(0)
1 are nonnegative numbers that sum to 1. Then,

P[X0 = 0] = µ
(0)
0 and P[X0 = 1] = µ

(0)
1 . (1)
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Figure 1: A symmetric two-state Markov chain
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Figure 2: Simulations of the symmetric two-state Markov chain for a = 0.1,0.2 and 0.5.

That is, the initial state X0 is equal to 0 with probability µ
(0)
0 , or 1 with probability µ

(0)
1 . Then, for all n≥ 0

and all x0, . . . ,xn−1 ∈ {0,1},

P[Xn+1 = 0 | X0 = x0, . . . ,Xn−1 = xn−1,Xn = 0] = P[Xn+1 = 0 | Xn = 0] = 1−a, (2)

P[Xn+1 = 1 | X0 = x0, . . . ,Xn−1 = xn−1,Xn = 0] = P[Xn+1 = 1 | Xn = 0] = a, (3)

P[Xn+1 = 0 | X0 = x0, . . . ,Xn−1 = xn−1,Xn = 1] = P[Xn+1 = 0 | Xn = 1] = a, (4)

P[Xn+1 = 1 | X0 = x0, . . . ,Xn−1 = xn−1,Xn = 1] = P[Xn+1 = 1 | Xn = 1] = 1−a. (5)

Figure 1, called the state transition diagram of the Markov chain, summarizes the rules (2)–(5) in a graphical
form. These rules specify the transition probabilities of the Markov chain. Rules (2)–(3) specify that if the
Markov chain is in state 0 at step n, then at the next step it stays in state 0 with probability 1−a or moves
to state 1 with probability a, independently of what happened in the previous steps. Thus, the Markov chain
may have been in state 0 for a long time prior to step n, or it may have just moved into state 0, but the
probability of staying in state 0 one more step is 1−a in those different cases. Rules (4)–(5) are similar.

In a sense, the Markov chain is amnesic: at step n, it forgets what it did before getting to the current state
and its future steps only depend on that current state. Here is one way to think of the rules of motion. When
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the Markov chain gets to state 0, it flips a coin. If the outcome is H, which occurs with probability a, then
it switches to state 1; otherwise, it stays in state 0 one more step. The situation is similar when the Markov
chain gets to state 1.

We define the transition probability matrix P by

P =

[
P00 P01
P10 P11

]
=

[
1−a a

a 1−a

]
.

Hence,
P[Xn+1 = j | X0 = x0, . . . ,Xn−1 = xn−1,Xn = i] = P[Xn+1 = j | Xn = i] = Pi j,

for all n≥ 0 and all x0, . . . ,xn−1, i, j ∈ {0,1}.
Figure 2 shows some simulations of the Markov chain with different values of a. When a= 0.1, it is unlikely
that the state of the Markov chain changes in one step. As the figure shows, the Markov chain spends many
steps in one state before switching. For larger values of a, the state of the Markov chain changes more
frequently. Note that, by symmetry, over the long term the Markov chain spends half of the time in each
state.

1.2 Five-State Markov Chain
Figure 3 shows the state transition diagram of a small web browsing experiment. Each state in the figure
represents a web page. The arrows out of a state correspond to links on the page that point to other pages.
The transition probabilities are not indicated on the figure, but the model is that each outgoing link is equally
likely. The figure corresponds to the following probability transition matrix:

P =


PAA PAB PAC PAD PAE

PBA PBB PBC PBD PBE

PCA PCB PCC PCD PCE

PDA PDB PDC PDD PDE

PEA PEB PEC PED PEE

=


0 1/2 0 1/2 0
0 0 1 0 0
1 0 0 0 0

1/3 1/3 0 0 1/3
0 1/2 1/2 0 0

 .

Figure 4 shows two simulation runs of this five-state Markov chain.

Figure 3: A five-state Markov chain. The outgoing arrows are equally likely.

2 General Finite Markov Chains
One defines a general finite Markov chain as follows. We use S to denote the state space, which we
assume is finite; e.g., S = {1,2, . . . ,K} for some finite K. The transition probability matrix P = (Pi j)i, j∈S
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Figure 4: Two simulation runs of the five-state Markov chain starting in state A.

is a |S |× |S | matrix such that
Pi j ≥ 0, ∀i, j ∈S ,

and
∑
j∈S

Pi j = 1, ∀i ∈S .

The initial distribution is a row vector µµµ(0) = (µ
(0)
i : i∈S ) where µ

(0)
i ≥ 0 for all i∈S and ∑i∈S µ

(0)
i = 1.

One then defines the random sequence {Xn,n = 0,1,2, . . .} by

P[X0 = i] = µ
(0)
i , (6)

P[Xn+1 = j | X0 = x0, . . . ,Xn−1 = xn−1,Xn = i] = P[Xn+1 = j | Xn = i] = Pi j, (7)

for all n≥ 0 and all x0, . . . ,xn−1, i, j ∈S . Note that

P[X0 = i0,X1 = i1, . . . ,Xn = in]

= P[X0 = i0] P[X1 = i1|X0 = i0] P[X2 = i2|X0 = i0,X1 = i1] · · ·P[Xn = in|X0 = i0, . . . ,Xn−1 = in−1]

= µ
(0)
i0 Pi0i1 · · ·Pin−1in .

Consequently,

P[Xn = in] = ∑
i0,...,in−1

P[X0 = i0,X1 = i1, . . . ,Xn = in]

= ∑
i0,...,in−1

µ
(0)
i0 Pi0i1 · · ·Pin−1in

= [µµµ(0)Pn]in ,

where the last expression is the in-th entry of the row vector obtained by multiplying the row vector µµµ(0) and
the n-th power of the matrix P.

Thus, if we denote by µµµ(n) = (µ
(n)
i : i ∈ S ) the distribution of Xn, so that P[Xn = i] = µ

(n)
i , then the last

derivation proves the following result:
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Theorem 21.1. For all n≥ 0,
µµµ
(n) = µµµ

(0)Pn. (8)

In particular, if µ
(0)
i = 1 for some i, then µ

(n)
j = [Pn]i j = P[Xn = j|X0 = i].

For the symmetric two-state Markov chain discussed in Section 1.1, one can verify that

Pn =

[
1−a a

a 1−a

]n

=

[ 1
2 +

1
2(1−2a)n 1

2 −
1
2(1−2a)n

1
2 −

1
2(1−2a)n 1

2 +
1
2(1−2a)n

]
. (9)

Note that if 0 < a < 1,

Pn→
[ 1

2
1
2

1
2

1
2

]
, as n→ ∞.

Consequently, for 0 < a < 1, one has µµµ(n) = µµµ(0)Pn→ (1
2 ,

1
2) as n→ ∞.

3 First Step Analysis

3.1 Hitting Time
Five-State Markov Chain Example

Consider the Markov chain in Figure 3. Assume it starts in state A. What is the average number of steps
until it reaches state E? To calculate that average time, for i ∈ {A,B,C,D,E}, define τ(i) to be the average
time until the Markov chain reaches state E given that it starts from state i.

Thus, τ(E) = 0 since it takes 0 step to reach E when starting in state E. Suppose we want to calculate τ(A).
It turns out that to calculate τ(A), one also has to calculate τ(B), . . . ,τ(D). We do this by finding equations
that these quantities satisfy and then solving these equations.

We claim that
τ(A) = 1+(1/2)τ(B)+(1/2)τ(D). (10)

To see this, note that when the Markov chain starts in state A, it stays there for one step. Then, with
probability 1/2 it moves to state B. After that, the average time until it reaches E is τ(B). With probability
1/2, the Markov chain moves to state D and then takes τ(D) steps, on average, to reach E. Thus, the time to
reach E starting from state A is 1 step plus an average of τ(B) steps with probability 1/2 and an average of
τ(D) steps with probability 1/2. Equation (10) captures that decomposition of the time to reach E starting
from A.

An identity similar to (10) can be written for every starting state. We find

τ(A) = 1+(1/2)τ(B)+(1/2)τ(D)

τ(B) = 1+ τ(C)

τ(C) = 1+ τ(A)

τ(D) = 1+(1/3)τ(A)+(1/3)τ(B)+(1/3)τ(E)

τ(E) = 0.

These equations are called the first step equations (FSE). Solving these equations, we find (see Appendix A
for the calculation)

τ(A) = 17, τ(B) = 19, τ(C) = 18, τ(D) = 13, τ(E) = 0. (11)
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General Finite Markov Chains

Let us now consider a general finite Markov chain with transition probability matrix P = (Pi j)i, j∈S on the
state space S . Let A ⊂S be a subset of states. For each i ∈S , let τ(i) be average number of steps until
the Markov chain enters one of the states in A , given that it starts in state i.

Then one has

τ(i) = 0, if i ∈A

τ(i) = 1+ ∑
j∈S

Pi jτ( j).

These equations are called the first step equations (FSE) for the average hitting time.

Two-State Markov Chain Example

As another example, consider the Markov chain in Figure 1. Let τ(i) be the average number of steps until
the Markov chain enters state 1. The first step equations are

τ(0) = 1+(1−a)τ(0)+aτ(1),

τ(1) = 0,

which implies τ(0) = 1/a. Note that the time to enter state 1 starting from state 0 is the number of times
one has to flip a loaded coin with P[H] = a until the first heads. This number of steps has a geometric
distribution with parameter a. Thus, we have rediscovered the fact that the mean value of a Geometric(p)
random variable is 1/p.

Two Heads in a Row

Say that you flip a fair coin repeatedly until you get two heads in a row. How many times do you have to
flip the coin, on average? Figure 5 shows a state transition diagram that corresponds to that situation. The
Markov chain starts in state S. The state is H or T if the last coin flip was H or T , except that the state is E if
the last two flips where heads. For i ∈ {S,T,H,E}, let τ(i) be the average number of steps until the Markov
chain enters state E. The first step equations are

τ(S) = 1+(1/2)τ(T )+(1/2)τ(H)

τ(T ) = 1+(1/2)τ(T )+(1/2)τ(H)

τ(H) = 1+(1/2)τ(T )+(1/2)τ(E)

τ(E) = 0.

Solving these coupled linear equations, we find

τ(S) = 6. (12)

(See Appendix A for the calculation.)
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Figure 5: Flipping a fair coin until two heads in row.

Rolling a Fair Die

Now assume you roll a fair six-sided die until the sum of the last two rolls is 8. The Markov chain that
corresponds to this situation has a start state S, a state i for i ∈ {1,2, . . . ,6} that indicates the value of the
last roll, and an end state E that the Markov chain enters when the sum of the last two rolls is 8. Thus, if the
state of the Markov chain is 5 and if the next roll is 2, then the new state is 2. However, if the next roll is 3,
then the Markov chain enters state E. The first step equations for the average time τ(i) it takes the Markov
chain to enter state E are as follows:

τ(S) = 1+
6

∑
i=1

(1/6)τ(i),

τ(i) = 1+ ∑
j∈{1,...,6}:i+ j 6=8

(1/6)τ( j).

Solving these equations, we find
τ(S) = 8.4. (13)

(See Appendix A for the calculation.)

Moving on a Ladder

Consider now the 20-rung ladder. A person starts on the ground. At each step, he/she moves up one rung
with probability p and falls back to the ground otherwise. Let τ(i) be the average number of steps needed
to reach the top rung, starting from rung i ∈ {0,1, . . . ,20}, where rung 0 refers to the ground. The first step
equations are

τ(i) = 1+(1− p)τ(0)+ pτ(i+1), i = 0, . . . ,19,

τ(20) = 0,

solving which yields

τ(0) =
p−20−1

1− p
. (14)

(See Appendix A for the calculation.) For instance, τ(0) ≈ 72 for p = 0.9, while τ(0) ≈ 429 for p = 0.8.
The morale of the story is that you have to be careful on a ladder.

Heads or Tails

Assume we play a game of heads-or-tails with a coin such that P[H] = p. For every heads, your fortune
increases by 1 and for every tails, it decreases by 1. When the initial fortune is m, let τ(m) denote the

CS 70, Spring 2019, Note 21 7



average time until the fortune reaches the value 0 or the value M, where M > m. The first step equations are

τ(n) = 1+(1− p)τ(n−1)+ pτ(n+1), for n = 1, . . . ,M−1

τ(0) = τ(M) = 0.

Solving these equations gives

τ(n) =

n(N−n), if p = 1
2 ,

n
1−2p

− M
1−2p

(
1−ρn

1−ρM

)
, if p 6= 1

2 .
(15)

(See Appendix A for the calculation.)

3.2 Probability of Hitting A before B

Let Xn be a finite Markov chain with state space S and transition probability matrix P. Further, let A and
B be two disjoint subsets of S . We want to determine the probability α(i) that, starting in state i, the
Markov chain enters one of the states in A before one of the states in B.

The first step equations for α(i) are

α(i) = ∑
j∈S

Pi jα( j), ∀i /∈A ∪B,

α(i) = 1, ∀i ∈A ,

α(i) = 0, ∀i ∈B.

To see why the first set of equations hold, we observe that the event that the Markov chain enters A before
B starting from i is partitioned into the events that it does so by first moving to state j, for all possible values
of j. Now, the probability that it enters A before B starting from i after moving first to j is the probability
that it enters A before B starting from j, because the Markov chain is amnesic. The second and third sets
of equations are obvious.

As an illustration, consider again the game of heads-or-tails and let α(n) be the probability that your fortune
reaches M before 0 when starting from n with 0≤ n≤M. The first step equations are

α(n) = (1− p)α(n−1)+ pα(n+1), 0 < n < M, (16)

α(M) = 1,

α(0) = 0.

Solving these equations, we find

α(n) =


n
N
, if p = 1

2 ,

1−ρn

1−ρM , if p 6= 1
2 ,

(17)

where ρ := (1− p)p−1. (See Appendix A for the calculation.) For instance, with p = 0.48 and M = 100,
we find that α(10) ≈ 4× 10−4, which is sobering when contemplating a trip to Las Vegas. Note that
for each gambler who plays this game, the Casino makes $10.00 with probability 1− 4× 10−4 and loses
$90.00 with probability 4× 10−4, so that the expected gain of the Casino per gambler is approximately
(1−4×10−4)×$10.00−4×10−4×$90.00 = $9.96. Observe that the probability of winning in one step is
48%, so that if the gamble did bet everything on a single game and stopped after one step, the Casino would
only make 0.52×$10.00−0.48×$10.00 = $0.40 on average per gambler, instead of $9.96. The morale of
the story is: don’t push your luck!
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4 Stationary Distribution
The following definition introduces the important notion of stationary or invariant distribution.

Definition 21.1 (Stationary or Invariant Distribution). A distribution πππ = (πi : i ∈ S ) is invariant (a.k.a.
stationary) for the transition probability matrix P if it satisfies the following balance equations:

πππ = πππP. (18)

The relevance of this definition is stated in the next result.

Theorem 21.2. The distribution µµµ(n) = µµµ(0)Pn satisfies

µµµ
(n) = µµµ

(0) for all n ∈ N,

if and only if µµµ(0) is invariant.

Proof. If µµµ(n) = µµµ(0) for all n≥ 0, then µµµ(0) = µµµ(1) = µµµ(0)P, so that µµµ(0) satisfies (18) and is thus invariant.

We prove the converse using induction on n. Suppose µµµ(0) is invariant. Then, µµµ(0)P = µµµ(0), which implies
µµµ(1) = µµµ(0)P = µµµ(0). Assume µµµ(n) = µµµ(0) for all n = 0,1, . . . ,k. Then µµµ(k+1) = µµµ(k)P = µµµ(0)P = µµµ(0).

For instance, in the case of the symmetric two-state Markov chain in Section 1.1, the balance equations are

π0 = π0(1−a)+π1a,

π1 = π0a+π1(1−a).

Each of these two equations is equivalent to
π0 = π1.

Thus, the two equations are redundant. If we add the condition that the components of πππ add up to one, we
find that the only solution is (π0,π1) = (1

2 ,
1
2), which is not surprising in view of symmetry.

For the five-state Markov chain in Section 1.2, the balance equations are

[πA,πB,πC,πD,πE ] = [πA,πB,πC,πD,πE ]


0 1/2 0 1/2 0
0 0 1 0 0
1 0 0 0 0

1/3 1/3 0 0 1/3
0 1/2 1/2 0 0

 .
Once again, these five equations in the five unknowns are redundant. They do not determine πππ uniquely.
However, if we add the condition that the components of πππ add up to one, then we find that the solution is
unique and given by (see Appendix A for the calculation)

(πA,πB,πC,πD,πE) =
1

39
(12,9,10,6,2). (19)

Thus, in this web-browsing example, page A is visited most often, then page C, then page B. A Google
search would return the pages in order of most frequent visits, i.e., in the order A,C,B,D,E. This ranking
of the pages is called PageRank and can be determined by solving the balance equations. (In fact, the actual
ranking by Google combines the estimate of πππ with other factors.)
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How many invariant distributions does a Markov chain have? We have seen that for the two examples, the
answer is one. However, that is not generally the case. For instance, consider the two-state Markov chain
with a = 0 instead of 0 < a < 1 as we assumed previously. This Markov chain does not change states. Its
transition probability matrix is P = I where I denotes the identity matrix. Since πππI = πππ for any vector πππ , we
see that any distribution is invariant for this Markov chain. This is intuitively clear since the Markov chain
does not change states, so that the distribution of the state does not change.

However, we show in Theorem 21.3 that a simple condition guarantees the uniqueness of the invariant
distribution.

5 Long-Run Behavior of Markov Chains
How much time does a Markov chain spend in state i ∈ S , in the long run? We can write this long-run
fraction of time as

lim
n→∞

1
n

n−1

∑
m=0

I{Xm = i},

where I{·} denotes the indicator function. To understand this expression, note that ∑
n−1
m=0 I{Xm = i} counts

the number of steps m in {0,1, . . . ,n−1} such that Xm = i. Thus, 1
n ∑

n−1
m=0 I{Xm = i} is the fraction of time

among the first n steps such that Xm = i. By taking the limit n→ ∞, we obtain the long-run fraction of time
spent in state i.

To study this long-run behavior, we need one property:

Definition 21.2 (Irreducible). A Markov chain is irreducible if it can go from every state i ∈ S to every
other state j ∈S , possibly in multiple steps.

The symmetric two-state Markov chain in Section 1.1 is irreducible for 0< a< 1, but not for a= 0. The five-
state Markov chain in Section 1.2 (cf., Figure 3) is irreducible. Observe that a Markov chain is irreducible
if and only if its state transition diagram is a directed graph with a single strongly connected component. In
this transition diagram, there is an arrow from state i to state j if Pi j > 0.

Here is a remarkable result.

Theorem 21.3. If a Markov chain with finite state space S and transition probability matrix P is irre-
ducible, then, for any initial distribution µµµ(0) and for all i ∈S ,

1
n

n−1

∑
m=0

I{Xm = i}→ πi as n→ ∞, (20)

where πππ = (πi : i ∈S ) is an invariant distribution for P. Consequently, the invariant distribution exists and
is unique.

Remark: The finiteness of S is important for the above theorem. For Markov chains with an infinite state
space, irreducibility is necessary but not sufficient to guarantee the results described in the above theorem.

We sketch the proof of the result in Appendix B. Here, we outline the main points of the argument. Consider
the Markov chain in Figure 3. Assume that X0 = A and let TA be the first time after 0 that the Markov chain
comes back to A. This random time has some mean value E[TA]. Let πA = 1/E[TA]. Thus, the time between
two visits to A has mean value E[TA], so that the fraction of time that the Markov chain is in state A is πA.
Hence, over a long time n, the Markov chain is in state A for about nπA steps. We define πi in the same way

CS 70, Spring 2019, Note 21 10



for the other states. These fractions of time in the different states must add up to one. Also, we claim that π

satisfies the balance equations. To see this, note that over a large number n of steps, the Markov chain visits
D immediately followed by A about nπDPDA times. Indeed, it visits D about nπD times and each of these
visits is followed by a visit to A with probability PDA. Similarly, it visits C and then A about nπCPCA times.
Thus, a general Markov chain visits some state j and then state i about nπ jPji times in n steps, for j ∈S .
Now, the total number of visits to i in n steps is the total number of visits to some j followed by a visit to i.
Hence, nπi = ∑ j nπ jPji, which shows that πππ solves the balance equations.

Is it the case that P[Xn = i] converges to some value as n increases? A simple example shows that this does
not have to be the case. Consider our two-state Markov chain and assume that a = 1. This Markov chain
keeps switching state, at every step. Thus, if X0 = 0, then X1 = 1,X2 = 0,X3 = 1,X4 = 0, and so on. For this
Markov chain, P[Xn = 0] = 1 when n is even and P[Xn = 0] = 0 when n is odd. Hence, P[Xn = 0] keeps on
oscillating between 0 and 1 and does not converge. Such a Markov chain is said to be periodic. However, if
a ∈ (0,1), then our calculation after Theorem 21.3 showed that P[Xn = 0]→ 1/2 as n→ ∞.

The following theorem generalizes this example.

Theorem 21.4. Consider an irreducible Markov chain on S with transition probability matrix P. For
i ∈S , define

d(i) := g.c.d{n > 0 | [Pn]ii = P[Xn = i|X0 = i]> 0}. (21)

1. Then, d(i) has the same value for all i∈S . If that value is 1, the Markov chain is said to be aperiodic.
Otherwise, it is said to be periodic with period d.

2. If the irreducible Markov chain is aperiodic, then for all i ∈S ,

P[Xn = i]→ πi as n→ ∞, (22)

where πππ = (πi : i ∈S ) is the unique invariant distribution for P.

To explain this theorem, we first need to clarify (21). For a given state i, the quantity d(i) is the greatest
common divisor or all the integers n > 0 so that the Markov chain can go from state i to state i in n steps.

For instance, for the Markov chain in Figure 1, assume that a = 1. In that case, the Markov chain can go
from state 0 to state 0 in n steps for all n in the set {2,4,6,8, . . .}. Thus, d(0) = g.c.d{2,4,6, . . .} = 2.
Similarly, we find that d(1) = 2. The Markov chain is irreducible and Theorem 21.4 correctly implies that
d(0) = d(1). This Markov chain is periodic with period 2. If a ∈ (0,1), then the Markov chain can go from
state 0 to state 0 in any n ≥ 1 steps. Thus, d(0) = g.c.d{1,2,3, . . .} = 1. Similarly d(1) = 1. The Markov
chain is aperiodic and the theorem implies that µ

(n)
i → πi = 1/2 as n→ ∞, as we had verified explicitly.

As another example, consider the Markov chain in Figure 3. This Markov chain is irreducible. Is it aperi-
odic? Looking at the state transition diagram, we see that

d(A) = g.c.d{2,3, . . .}= 1.

Indeed, the Markov chain can go from state A to state A in two steps (A→ D→ A) and in three steps
(A→ B→ C → A). Thus, the Markov chain is aperiodic. Just for fun, let us compute d(B). We find
d(B) = g.c.d.{3,4, . . .} = 1. Thus, Theorem 21.4 implies that µ

(n)
i → πi as n→ ∞. For instance, P[Xn =

A]→ 12/39. This is a powerful result because computing µµµ(n) directly is not that simple!

We provide a proof of the theorem in Appendix B. Here are the key points of the argument when the Markov
chain is aperiodic. Consider the Markov chain of Figure 3. For i ∈S , define S(i) = {n > 0 | Pn

ii > 0} and
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note that S(E) = {4,5,6, . . .}. Thus, any n≥ n(E) := 4 is contained in S(E). In general, one can show that if
d(i) = 1, then there is some integer n(i) so that {n(i),n(i)+1, . . .} ⊂ S(i). Note also that the Markov chain
can go from state C to E in some finite number a of steps (here, a = 3). Also, it can go from E to C is b
steps (here, b = 1). Hence, it can go from C to C in a+n+b steps for any n≥ n(E) by first going from C to
E in a steps, then from E to E in n steps, then from E to C in b steps. Thus, S(C) contains two consecutive
integers, so its g.c.d. d(C) is equal to one. Similarly, d( j) = 1 for any state j if there is some state i with
d(i) = 1. Also, this argument shows that there is some integer k so that the Markov chain can go from any
state j to some specific state i in k steps (the same k for all j).

A Appendix: Calculation
Here we detail the derivation of the results described in this note.

A.0.1 Identity (9)

By symmetry, we can write

Pn =

[
1−κn κn

κn 1−κn

]
for some κn that we determine below. Note that κ1 = a. Also,

Pn+1 =

[
1−κn+1 κn+1

κn+1 1−κn+1

]
= PPn =

[
1−a a

a 1−a

][
1−κn κn

κn 1−κn

]
.

Consequently, by looking at component (0,1) of this product,

κn+1 = (1−a)κn +a(1−κn) = a+(1−2a)κn.

Let us try a solution of the form κn = b+ cλ n. We need

κn+1 = b+ cλ
n+1 = a+(1−2a)κn = a+(1−2a)[b+ cλ

n] = a+(1−2a)b+(1−2a)cλ
n.

Matching the terms, we see that this identity holds if

b = a+(1−2a)b and λ = 1−2a.

The first equation gives b = 1/2. Hence, κn = 1/2+ c(1− 2a)n. To find c, we use the fact that κ1 = a, so
that 1/2+ c(1−2a) = a, which yields c =−1/2.

Hence, κn = 1/2− (1/2)(1−2a)n.

A.0.2 Identity (11)

Using the third equation in the second, we find τ(B) = 2+τ(A). The fourth equation then gives τ(D) = 1+
(1/3)τ(A)+(1/3)(2+τ(A))= 5/3+(2/3)τ(A). The first equation then gives τ(A)= 1+(1/2)(2+τ(A))+
(1/2)[5/3+(2/3)τ(A)] = 17/6+(5/6)τ(A). Hence, (1/6)τ(A) = 17/6, so that τ(A) = 17. Consequently,
τ(B) = 19 and τ(D) = 5/3+34/3 = 13. Finally, τ(C) = 18.
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A.0.3 Identity (12)

The last two equations give τ(H) = 1+(1/2)τ(T ). If we substitute this expression in the second equation,
we get τ(T ) = 1 + (1/2)τ(T ) + (1/2)[1 + (1/2)τ(T )], or τ(T ) = 3/2 + (3/4)τ(T ). Hence, τ(T ) = 6.
Consequently, τ(H) = 1+(1/2)6 = 4. Finally, τ(S) = 1+(1/2)6+(1/2)4 = 6.

A.0.4 Identity (13)

Let us write the equations explicitly:

τ(S) = 1+(1/6)[τ(1)+ τ(2)+ τ(3)+ τ(4)+ τ(5)+ τ(6)]

τ(1) = 1+(1/6)[τ(1)+ τ(2)+ τ(3)+ τ(4)+ τ(5)+ τ(6)]

τ(2) = 1+(1/6)[τ(1)+ τ(2)+ τ(3)+ τ(4)+ τ(5)]

τ(3) = 1+(1/6)[τ(1)+ τ(2)+ τ(3)+ τ(4)+ τ(6)]

τ(4) = 1+(1/6)[τ(1)+ τ(2)+ τ(3)+ τ(5)+ τ(6)]

τ(5) = 1+(1/6)[τ(1)+ τ(2)+ τ(4)+ τ(5)+ τ(6)]

τ(6) = 1+(1/6)[τ(1)+ τ(3)+ τ(4)+ τ(5)+ τ(6)].

These equations are symmetric in τ(2), . . . ,τ(6), while the first two equations imply τ(1) = τ(S). Let
γ = τ(2) = · · ·= τ(6). Then, we can write the above equations as

τ(S) = 1+(1/6)[τ(S)+5γ] = 1+(1/6)τ(S)+(5/6)γ

γ = 1+(1/6)[τ(S)+4γ] = 1+(1/6)τ(S)+(2/3)γ.

The first equation gives
τ(S) = 6/5+ γ, (23)

while the second yields
γ = 3+(1/2)τ(S). (24)

Substituting (23) into (24) gives

γ = 3+(1/2)[6/5+ γ] = 18/5+(1/2)γ.

Hence,
γ = 36/5

and, consequently,
τ(S) = 6/5+36/5 = 42/5 = 8.4.

A.0.5 Identity (14)

Let us look for a solution of the form τ(i) = a+bλ i. Then

a+bλ
i = 1+(1− p)(a+b)+ p[a+bλ

i+1] = 1+(1− p)(a+b)+ pa+bpλ
i+1.

This identity holds if
a = 1+(1− p)(a+b)+ pa and λ = p−1,
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i.e.,
b =−(1− p)−1 and λ = p−1.

Then,
τ(i) = a− (1− p)−1 p−i.

Since τ(20) = 0, we need
0 = a− (1− p)−1 p−20,

so that a = (1− p)−1 p−20 and

τ(i) = (1− p)−1 p−20− (1− p)−1 p−i =
p−20− p−i

1− p
.

A.0.6 Identity (15)

Let us make a little detour into the solution of such difference equations. In the following discussion, assume
p 6= 1

2 . Suppose you have a function g(n) such that

g(n) = 1+(1− p)g(n−1)+ pg(n+1),

and two functions h(n) and k(n) such that

h(n) = (1− p)h(n−1)+ ph(n+1)

k(n) = (1− p)k(n−1)+ pk(n+1).

Then, for any two constants a and b, we note that τ(n) := g(n)+a ·h(n)+b · k(n) satisfies

τ(n) = 1+(1− p)τ(n−1)+ pτ(n+1).

We can then choose the two constants a and b to make sure that 0 = τ(0) = τ(M).

To find g(n), we try g(n) = cn. We need

cn = 1+(1− p)c(n−1)+ pc(n+1) = 1+ cn− (1− p)c+ pc = cn+1− c+2pc.

Thus, we need 1− c+2pc = 0, i.e., c = (1−2p)−1.

To find solutions to β (n) = (1− p)β (n−1)+ pβ (n+1), we try β (n) = λ n. Then,

λ
n = (1− p)λ n−1 + pλ

n+1.

With n = 1, this gives
λ = (1− p)+ pλ

2.

Hence,
pλ

2−λ +(1− p) = 0.

The solutions of this quadratic equation are

λ =
1±
√

1−4p(1− p)
2p

=
1± (1−2p)

2p
= 1 and ρ := (1− p)p−1.

Thus, we find two such solutions that correspond to these two values of λ :

h(n) := 1 and k(n) := ρ
n.
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We now choose the two parameters a and b so that τ(n) = g(n)+ah(n)+bk(n) satisfies the two conditions
τ(0) = τ(M) = 0. This should give us two equations in the two unknowns a and b.

These equations are

0 = τ(0) = g(0)+ah(0)+bk(0) = 0+a×1+b×1 = a+b

and
0 = τ(M) = g(M)+ah(M)+bk(m) = M(1−2p)−1 +a×1+b×ρ

M.

The first equation gives b =−a, so that the second implies

0 = M(1−2p)−1 +a(1−ρ
M).

Hence,

a =−M(1−2p)−1

1−ρM .

Hence, for p 6= 1
2 ,

τ(n) = n(1−2p)−1−M(1−2p)−1

1−ρM (1−ρ
n).

Finding τ(n) for the case of p = 1
2 is left as an exercise.

A.0.7 Identity (17)

In the calculation of (15) for p 6= 1
2 , we found two solutions to (16):

α(n) = 1 and α(n) = ρ
n

with ρ = (1− p)p−1. Hence, for any two constants a and b, a solution is α(n) = a+bρn. We now choose
a and b so that α(0) = 0 and α(M) = 1. That is,

0 = a+b and 1 = a+bρ
M.

Thus, b =−a and
1 = a(1−ρ

M), i.e., a = (1−ρ
M)−1.

Hence, for p 6= 1
2 ,

α(n) = a+bρ
n = a(1−ρ

n) =
1−ρn

1−ρM .

Finding α(n) for the case of p = 1
2 is left as an exercise.

A.0.8 Identity (19)

The balance equations are πππ = πππP.

We know that the equations do not determine πππ uniquely. Let us choose arbitrarily πA = 1. We then solve
for the other components of πππ and we renormalize later. We can ignore any equation we choose. Let us
ignore the first one. The new equations are

[πB,πC,πD,πE ] = [1,πB,πC,πD,πE ]


1/2 0 1/2 0
0 1 0 0
0 0 0 0

1/3 0 0 1/3
1/2 1/2 0 0

 .
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Equivalently,

[πB,πC,πD,πE ] = [1/2,0,1/2,0]+ [πB,πC,πD,πE ]


0 1 0 0
0 0 0 0

1/3 0 0 1/3
1/2 1/2 0 0

 .
By inspection, we see that πD = 1/2, then πE = (1/3)πD = 1/6, then πB = 1/2+(1/3)πD +(1/2)πE =
1/2+1/6+1/12 = 3/4. Finally, πC = πB +(1/2)πE = 3/4+1/12 = 5/6. The components πA + · · ·+πE

add up to 1+ 3/4+ 5/6+ 1/2+ 1/6 = 39/12. To normalize, we multiply each component by 12/39 and
we get

πππ =
1
39

(12,9,10,6,2).

We could have proceeded differently and observed that our identity implies that

[πB,πC,πD,πE ]


1 −1 0 0
0 1 0 0
−1/3 0 1 −1/3
−1/2 −1/2 0 1

= [1/2,0,1/2,0].

Hence,

[πB,πC,πD,πE ] = [1/2,0,1/2,0]


1 −1 0 0
0 1 0 0
−1/3 0 1 −1/3
−1/2 −1/2 0 1


−1

.

This procedure is a systematic way to solve the balance equations by computer.

B Appendix: Some Proofs

B.1 Sketch of Proof of Theorem 21.3
A formal proof of Theorem 21.3 is a bit complicated. However, we can sketch the argument to justify the
result.

First let us explain why (20) implies that the invariant distribution is unique. Assume that ννν = {νi, i ∈S } is
an invariant distribution and choose µµµ(0) = ννν . Then P[Xn = i] = νi for all n≥ 0. Call Yn the fraction in (20).
Note that E[Yn] = νi for all n, because E[I{Xm = i}] = P[Xm = i] = νi. Now, (20) says that Yn→ πi. We claim
that this implies that E[Yn]→ πi, so that νi→ πi, which implies that νi = πi. To prove the claim, we use the
fact that Yn→ πi implies that, for any ε > 0, there is some n large enough so that P[|Ym−πi| ≤ ε] ≥ 1− ε

for all m ≥ n. But then, because Ym ∈ [0,1], we see that E[|Ym−πi|] ≤ ε(1− ε)+ ε , so that |E[Ym]−πi| ≤
E[|Ym−πi|]≤ 2ε . This shows that E[Ym]→ πi.

The second step is to note that all the states must be recurrent, which means that the Markov chain visits
them infinitely often. Indeed, at least one state, say state i, must be recurrent since there are only finitely
many states. Consider any other state j. Every time that the Markov chain visits i, it has a positive probability
p of visiting j before coming back to i. Otherwise, the Markov chain would never visit j when starting from
i, which would contradict its irreducibility. Since the Markov chain visits i infinitely often, it also must visit
j infinitely often, in the same way that if you flip a coin with P[H] = p > 0 forever, you must see an infinite
number of Hs.
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The third step is to observe that the times T (i,1),T (i,2), . . . between successive visits to one state i are
independent and identically distributed, because the motion of the Markov chain starts afresh whenever
it enters state i. By the law of large number, (T (i,1) + · · ·+ T (i,n))/n→ E[T (i,1)] as n→ ∞. Hence,
n/(T (i,1)+ · · ·+T (i,n))→ πi := 1/E[T (i,1)]. That is, the rate of visits of state i is πi.

The fourth step is to show that πi > 0 for all i. Indeed, πi > 0 for at least one state i, otherwise the rate of
visits of all the states would be zero, which is not possible since these rates of visit add up to one. Also, if
the Markov chain visits state i with rate πi > 0, then it visits state j with at least rate πi p > 0 because it visits
j with probability p between two visits to i. Hence, π j > 0 for all j.

The fifth step is to show that πi satisfies the balance equations. We saw that, during a large number n of
steps, the Markov chain visits state j approximately nπ j times. Consider then a given state i. Since that state
is visited with probability Pji after each visit to state j, state i should be visited approximately nπ jPji times
immediately after the nπ j visits to state j. If we sum over all the states j, we see that state i should be visited
approximately n∑ j π jPji times over n steps. But we know that this number of visits is approximately nπi.
Hence, it must be that n∑ j π jPji ≈ nπi, i.e., that πi = ∑ j π jPji. These are the balance equations.

B.2 Proof of Theorem 21.4
We give the proof in the aperiodic case, i.e., when there is some state i such that d(i) = 1.

Define S(i) = {n > 0 | [Pn]ii > 0}. We fist show that there is some integer n(i) so that every n ≥ n(i)
is contained in S(i). Note that if g.c.d.(S(i)) = 1, then there must be a,b ∈ S(i) with g.c.d.{a,b} = 1.
Using Euclid’s extended g.c.d. algorithm, we find integers m and n so that ma+nb = g.c.d{a,b} = 1. Let
m+ = max{0,m},n+ = max{0,n},m− = m+−m, and n− = n+− n. Then (m+−m−)a+(n+− n−)b = 1
and we note that k := m−a+n−b and k+1 = m+a+n+b are both in S(i), since a,b ∈ S(i). Now, if n≥ k2,
then one can write n = c1k+ c2 for some c1 ≥ k and some c2 ∈ {0,1, . . . ,k−1}. But then

n = c1k+ c2 = (c1− c2)k+ c2(k+1) ∈ S(i),

since both k and k+1 are in S(i). Thus, any n≥ n(i) = k2 is such that n ∈ S(i).

Next we show that d( j) = 1 for every state j. Since it is irreducible, the Markov chain can go from j to i in
some a steps and from i to j in some b steps. But the Markov chain can go from i to i in n(i) or in n(i)+1
steps. Consequently, the Markov chain can go from j to j in a+n(i)+b steps and also in a+n(i)+1+b
steps by going from j to i in a steps, then from i to i in n(i) or n(i)+ 1 steps, then from i to j in b steps.
Hence, {n > 0 | [Pn] j j > 0} contains two consecutive integers a+ n(i)+ b and a+ n(i)+ 1+ b, so that its
g.c.d. must be equal to one. Thus, d( j) = 1 for every state j.

Let us now fix a state i arbitrarily. The claim is that there is some integer k such that the Markov chain can
go from any state j to state i in k steps. To see this, using the irreducibility of the Markov chain, we know
that for every j there is some integer n( j, i) so that the Markov chain can go from j to i in n( j, i) steps. But
then, the Markov chain can go from j to i in n+n( j, i) steps for any n≥ n( j). Indeed, the Markov chain can
go first from j to j in n steps, then from j to i in n( j, i) steps. Thus, the Markov chain can go from j to i in
n steps, for any n≥ n( j)+n( j, i). We then let k = max j{n( j)+n( j, i)}.
Next, consider two independent copies Xn and Zn of the Markov chain with transition matrix P. Markov
chain Xn starts with the invariant distribution πππ . Markov chain Zn starts with an arbitrary initial distribution
µµµ(0). Define state i and the integer k as in the previous paragraph. There is some positive probability p that
the two Markov chains both are in state i after k steps. If they are not, then there is again a probability p
that they are both in state i after k more steps, and so on. Thus, if we designate by τ the first time that the
two Markov chains meet, i.e., τ = min{n≥ 0 | Xn = Zn}, we see that P[τ > km]≤ (1− p)m for m = 1,2, . . ..
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Now, define the Markov chain Yn so that Yn = Zn for n < τ and Yn = Xn for n ≥ τ . In words, the Markov
chain starts like Zn, but it sticks to Xn once Xn = Zn. This Markov chain Yn still has transition matrix P and
its initial distribution is µµµ(0). Note that P[Xn 6= Yn] = P[τ > n]→ 0 as n→ ∞. Hence,

|P[Xn = i]−P[Yn = i]| ≤ P[Xn 6= Yn]→ 0, as n→ ∞.

But P[Xn = i] = πi for all n since Xn starts with the invariant distribution π . We conclude that P[Yn = i]→ πi

as n→ ∞.
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