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1 Chinese Remainder Theorem
It is worth stepping back for a moment and looking at what the EGCD revealed to us. It said that the GCD
could be expressed as ax+ by for two numbers x,y. To interpret this, we can imagine the number line,
starting at zero and stretching out infinitely in both directions. Imagine that we are only allowed to take
steps that are either x or y long. So, if x = 5 and y = 7, then we can either move to the right or left by 5 units
or 7 units. Suppose we start at zero, and want to know everywhere we can reach by taking a sequence of
such moves.

Intuitively, if we can reach a number z, we can reach any multiple of z by simply repeating the steps it took
to get to z over and over again. The fact that we can execute the steps of the Euclid’s GCD algorithm tells
us that anything we can reach by taking steps of x and y must share all the common factors of x and y. This
means that we can only reach any multiple of the GCD of x and y. The set of points that we can reach with
such operations is called a “lattice” and this lattice-width interpretation of the GCD is interesting1.

When the GCD is 1, it means that we can reach all points on the integer lattice in this manner. Those who
have taken linear algebra will notice a very striking intellectual “rhyme” with the ideas of a basis and span.
When their GCD is 1, it is as though the numbers x and y span all the integers2. The Chinese Remainder
Theorem (CRT) can be interpreted as a way to make this interpretation even more striking.

Suppose we wanted to understand all the numbers mod pq where p and q are relatively prime to each other.
If we had to arrange these numbers onto a sheet of paper, how would we do so? Going back to elementary
school, it is natural to associate a product pq with a rectangle: p long on one side and q long on the other.
So now, we know that we can place the pq numbers from 0 to pq−1 on this rectangle. But how? In what
order? Given a number, how can you find its “x-coordinate” as something from 0,1, . . . , p− 1 and its “y-
coordinate” as something from 0,1, . . . ,q−1? The natural first guess is to take a number z and just compute
z mod p and z mod q to get two “coordinates” for z.

At this point, it is very useful to do a little exercise for yourself. Suppose p = 3 and q = 5 and just place
all the numbers from 0 to 14 on this grid. You will see the coordinates as 0 = (0,0),1 = (1,1),2 = (2,2),3 =
(0,3),4=(1,4),5=(2,0),6=(0,1),7=(1,2),8=(2,3),9=(0,4),10=(1,0),11=(2,1),12=(0,2),13=
(1,3),14 = (2,4). When writing them out, you will see that all the numbers lie on a diagonal line that wraps
around the rectangle until it fills it. Notice that no two numbers from 0 to 14 have the same coordinates.
Furthermore, notice that doing component-wise mod (3,5) addition on the coordinates corresponds to doing
mod 15 addition on the numbers themselves. Perhaps more interestingly, doing component-wise mod (3,5)
multiplication on the coordinates corresponds to doing mod 15 multiplication on the numbers themselves.
(E.g., 3 ∗ 4 = 12 and (0,3) ∗ (1,4) ≡ (0,2)). This means that operations can be equivalently performed
component-wise in the tuple-representation.

1This interpretation also makes short work of the classic family of puzzles of the form “you have a 5 oz cup and a 7 oz cup, an
infinite reservoir of water, and a unlimited size mixing bowl. Can you manage to pour exactly z oz of water into a jar?” Do you see
how such puzzles can be solved using EGCD?

2And when the GCD is 2, we can reach all even numbers. The even numbers behave in a way analogous to a subspace in linear
algebra.
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Furthermore, we notice that there are two special tuples (1,0) = 10 and (0,1) = 6. The corresponding
numbers act like “orthonormal basis elements” do in linear algebra. They provide an easy way to map from
coordinates back to numbers. So (a,b) in coordinates represents the same number as 10a+ 6b mod 15.
For example, (2,1)→ 20+ 6 = 26 ≡ 11 (mod 15). So, not only can we easily move from numbers to
coordinates (by just taking mods), we can also easily move from coordinates to numbers (by using these
special basis elements). Before we state the general form of the Chinese Remainder Theorem, it is useful to
observe that the basis element 10 corresponding the first coordinate (obtained by modding by 3) is a multiple
of the other modulus 5. This has to be true because its representation in coordinates is designed to have a
zero in that other coordinate. Similarly, 6 corresponds to the second coordinate (obtained by modding by 5)
and is a multiple of 3.

With this example in hand, we are ready to generalize and to state the result more formally.

Theorem 6.6 (Chinese Remainder Theorem). Let n1,n2, ...,nk be positive integers coprime to each other,
and let N = n1 · n2 · ... · nk. Then for any sequence (a1,a2, ...,ak) such that ai ∈ Zni , there exists a unique
x ∈ ZN such that

x≡ a1 (mod n1)

x≡ a2 (mod n2)

...

x≡ ak (mod nk)

Proof. We will first show that such an x exists by explicitly constructing it. Suppose that we have a sequence
of integers (b1,b2, ...,bk) such that for each i, bi ≡ 1 (mod ni) but bi ≡ 0 (mod n j) for any j 6= i. I claim
that a1b1+a2b2+ ...+akbk satisfies all k of equations. Indeed, if we imagine taking this summation modulo
n1, every term except the first will drop out, as b j ≡ 0 (mod n1) for all j 6= 1. This means we are only left
with the first term — and since b1 ≡ 1 (mod n1), this is equivalent to a1 mod n1, as desired. We can repeat
this same argument for all k congruences. We cannot immediately take x = a1b1 + ...+akbk though, as this
may be larger than N. However, adding or subtracting a multiple of ni from x will not affect the ith equation;
since N is a multiple of all the nis, adding or subtracting a multiple of N will not affect any equation. Thus,
we can take x = a1b1 + ...+akbk (mod N) as our solution.

Of course, this is all based on the assumption that we had a sequence of integers (b1, ...,bk) with the desired
properties. Thus, in order to complete the existence proof, we have to show how to construct such integers.
In order to construct bi, we note that for any integer c, c ·∏ j 6=i n j will be a multiple of n j, and hence will
be 0 mod n j for any j 6= i. Thus, we just need to choose c to ensure that c ·∏ j 6=i n j ≡ 1 (mod ni). But this
is exactly saying that c should be the multiplicative inverse of ∏ j 6=i n j modulo ni! How do we know such
an inverse exists? Well, we know that each n j shares no prime factors with ni, so certainly their product
doesn’t either. Thus, ∏ j 6=i n j is relatively prime to ni, and so will have an inverse as required. Putting this

all together, we construct our sequence of integers by taking bi =
(
∏i 6= j n j

)
·
((

∏i6= j n j
)−1

(mod ni)
)

.

We now show that this solution is unique modulo N; we have two arguments that we could use. The simplest
argument is by counting. There are N = ∏

k
i=1 ni possible values for the (a1,a2, . . . ,ak) tuples and the N

numbers from 0 to N− 1 each land in exactly one of these. If two landed in one bin, then that means that
another bin must be empty. But we can construct an x corresponding to that bin and so it cannot be empty.
This means that there must be a bijection from the coordinate tuples (a1,a2, . . . ,ak) and the N numbers from
0 to N−1.
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Alternatively, suppose that some y also solves these congruences. Consider z = y− x. Clearly z mod ni is
zero for all the ni. This means that z is a multiple of ni for each i and since they are all coprime, z is a multiple
of N, their product. But the difference of two numbers ranging from 0 to N−1 must have an absolute value
of at most N− 1. This means that the only multiple of N that z can be is 0. This means that y = x and so
indeed, the given solution is unique.

The Chinese Remainder Theorem (CRT) is a very powerful tool since it lets us move between numbers
and their coordinates for the purpose of doing computations. This means that instead of doing one large
calculation, we may be able to get away with doing several smaller calculations and combining their results
at the end. Depending on the constraints of your system, this may give you much more power than you
would otherwise have.

2 Bijections
A function f with domain D and range R, denoted f : D→ R, is simply a way of assigning an element of
R to each element of D. It is perfectly allowed to have two elements of D assigned to the same element of
R, or to have no element in D assigned to some particular element of R3, so long as each element in D gets
assigned exactly one element in R. However, in the rest of this note and the next, we often need functions
for which one or both of those do not happen. In order to refer to such functions, we give the following
definitions.

Definition 6.1. Let f be a function from D to R. We say
(1) f is one-to-one (injective) if for all x,x′ ∈ D such that x 6= x′, f (x) 6= f (x′).
(2) f is onto (surjective) if for all y ∈ R, there exists an x ∈ D such that f (x) = y.
(3) f is bijective if f is both one-to-one and onto.

Intuitively, f is one-to-one if we don’t allow two elements of D to be mapped to the same point in R; f is
onto if we make sure there is no element of R that doesn’t get mapped to by something.

As an example of where this is helpful, we notice that the Chinese Remainder Theorem gives us a bijection
between Zn1 × ...×Znk and ZN .4 And indeed, with a little bit more thinking, we realize that it also gives
us a bijection in the other direction! In particular, the function that maps x to (x mod n1, ...,x mod nk) is a
bijection from ZN to Zn1 × ...×Znk . The existence part of the CRT tells us that this function is onto, while
the uniqueness part tells us it is one-to-one.

What this example hints at is another way of characterizing bijections: bijections are precisely those func-
tions that have inverses. In the CRT example above, we see that the map from Zn1 × ...×Znk to ZN and
that in the other direction are doing precisely the opposite of one another. We formalize this intuition in the
following theorem:

Theorem 6.7. Let f be a function from D to R. Then f is a bijection if and only if it has an inverse function
f−1; that is, if and only if there exists a function f−1 : R→ D such that f ( f−1(y)) = y for all y ∈ R and
f−1( f (x)) = x for all x ∈ D.

3In other contexts, you may have seen the word range defined to be only those elements which the function can actually take
on, while R here would be called the co-domain. For the purposes of this class, we do not make this distinction.

4In fact, this bijection is also an isomorphism, meaning that it doesn’t matter if we add/multiply and then apply the function or
apply the function first, then add/multiply. This property is precisely what allows us to do arithmetic calculations in the smaller
moduli before combining them into the final answer in the larger modulus.
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Proof. We first prove the “if direction”. Suppose that we have an inverse function f−1. For any y ∈ R,
consider f−1(y), which is an element of D. By the definition of an inverse function, f ( f−1(y)) = y, so there
is an element of D that maps to y. We can do this with any y ∈ R, so f must be onto. To prove that f is
one-to-one, suppose that we had two values x,x′ ∈ D such that f (x) = f (x′). If we plug the same value into
f−1 twice, we’ll get out the same result, so f−1( f (x)) = f−1( f (x′)). By the definition of the inverse, we
know that the left side is x while the right side is x′, so x = x′. Thus, for any x 6= x′, we have that f (x) 6= f (x′),
and so f is one-to-one. Since f is both one-to-one and onto, we have that f is bijective.

We now proceed with the “only if” direction. Suppose that f is one-to-one and onto. Since f is onto, we
know that for every y ∈ R, there is an x ∈D such that f (x) = y; since f is one-to-one, this x is unique. Thus,
we can define a function f−1 that maps each y to its corresponding x ∈D. By definition then, we will indeed
have that f ( f−1(y)) = y for all y ∈ R and f−1( f (x)) = x for all x ∈ D, so f−1 is indeed f ’s inverse.

If we look closely at the definition of an inverse function, we notice that ( f−1)−1 is just f itself. This tells
us that the inverse of any bijection is itself a bijection, as it has an inverse. Hence, if there is a bijection from
D to R, there is also a bijection from R to D; this is why we sometimes say there is a bijection between D
and R rather than from one to another.

3 Fermat’s Little Theorem
Now that we have discussed bijections, we can give a proof of a very famous theorem, known as Fermat’s
Little Theorem. While its statement may seem esoteric at first, we will see in the next note that it is the key
to why the RSA cryptosystem, and by extension much of modern-day e-commerce, works.

Theorem 6.8 (Fermat’s Little Theorem). Let p be prime and a 6≡ 0 (mod p). Then ap−1 ≡ 1 (mod p).

Proof. Let Sp denote the set of non-zero numbers modulo p; that is, Sp = {1,2, ..., p−1}. We first prove that
the function f (x) = ax (mod p) is a bijection from Sp to itself. First, we have to show that for any x ∈ Sp,
f (x) ∈ Sp — if this were not the case, f wouldn’t be a function from Sp to itself, much less a bijection!
Since x∈ Sp, we know that x is not divisible by p. We can say the same thing for a, as a 6≡ 0 (mod p). Since
p is a prime, we know that ax will not be divisible by p so long as neither a nor x is, so indeed f (x) ∈ Sp.

Now consider the set S′p = {a mod p,2a mod p, ...,(p− 1)a mod p}. In other words, S′p = { f (x)|x ∈ Sp}.
But f (x) is a bijection, so every element in Sp appears exactly once in S′p. In particular, this means that S′p
and Sp are the same set — it’s just that we listed their elements in different orders! But order doesn’t matter
when multiplying, so we must have that the product of all the elements in Sp is the same as that for S′p:

p−1

∏
x=1

x =
p−1

∏
x=1

(
ax mod p

)
(1)

Recall that for modular equivalences, it does not matter if we take the modulus at an intermediate step or at
the end. Thus, if we take (1) modulo p and wait to do the modulus until the end, we get

p−1

∏
x=1

x≡
p−1

∏
x=1

ax≡ ap−1
p−1

∏
x=1

x (mod p) (2)

where in the last step we factored the a out of each term in the product. But now we’re effectively there —
if we simply multiply both sides of the equation by the inverse of the product, we’ll have ap−1 ≡ 1 (mod p)
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as desired. But how do we know that the inverse of that product exists? Since p is prime, we know that none
of the numbers in Sp share a factor with it, so their product won’t either.5 In other words, we have that the
product is coprime to p, and hence has an inverse. Thus, it is indeed valid for us to multiply both sides of
(2) by the inverse of the product in order to get our desired result.

In addition to the applications to cryptography we’ll see in the next note, Fermat’s Little Theorem can also
help us speed up modular exponentiation when our modulus is prime. For example, if we wanted to calculate
2122 (mod 11), we could note that it is equivalent to (210)12 ·22 ≡ 4 (mod 11); this is much faster even than
our repeated squaring algorithm from the previous note.

5This is the key part of the proof where we use the fact that p is prime. It turns out that there is a generalization of Fermat’s
Little Theorem, known as Euler’s Totient Theorem, which allows us to work with non-prime moduli.
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