CS 70 Discrete Mathematics and Proloa]oility Theory
Summer 2019 Course Notes Note 7

This note is partly based on Section 1.4 of “Algorithms," by S. Dasgupta, C. Papadimitriou and U. Vazirani,
McGraw-Hill, 2007.

| Introduction to Cryptography

In this note, we discuss the notion of cryptography, which is the study of how to securely send messages
over potentially insecure channels. The basic setting for cryptography is typically described via a cast of
three characters: Alice and Bob, who with to communicate confidentially, and Eve, an eavesdropper who is
listening in and trying to discover what they are saying. Let’s assume that Alice wants to transmit a message
m (written in binary) to Bob. She will apply her encryption function E to m and send the encrypted message
E(m) over the link; Bob, upon receipt of E(m), will then apply his decryption function D to it and thus
recover the original message: i.e., D(E(m)) = m.

Since the link is insecure, Alice and Bob have to assume that Eve may get hold of E(m). (Think of Eve
as being a “sniffer" on the network.) Thus ideally we would like to know that the encryption function E
is chosen so that just knowing E(m) (without knowing the decryption function D) doesn’t allow one to
discover anything about the original message m.

For centuries cryptography was based on what are now called private-key protocols. In such a scheme,
Alice and Bob meet beforehand and together choose a secret codebook, with which they encrypt all future
correspondence between them. (This codebook plays the role of the functions E and D above.) Eve’s only
hope then is to collect some encrypted messages and use them to at least partially figure out the codebook.

Public-key schemes, are significantly more subtle and tricky: they allow Alice to send Bob a message
without ever having met him before! This almost sounds impossible, because in this scenario there is a
symmetry between Bob and Eve: why should Bob have any advantage over Eve in terms of being able to
understand Alice’s message? The central idea is that Bob is able to implement a digital lock, to which only
he has the key. Now by making this digital lock public, he gives Alice (or, indeed, anybody else) a way to
send him a secure message which only he can open.

2 Private Key Cryptography
2.1 The XOR Operation

Our first example of a secure cryptography system will be a private-key protocol based off the XOR opera-
tion. This operation takes as inputs two bits, and outputs the bit 1 if and only if exactly one of its two inputs
is a 1. This can also be expressed in the following truth table:

CS 70, Summer 2019, Note 7

s

Given two equal length bit strings x and y, we can consider the bit-wise XOR of the two strings, x &y, the
ith bit of which is just the XOR of the ith bit of x with the ith bit of y. One particular property of the XOR
operation is that it is its own inverse. Formally, we have

Lemma 7.1. Let by and by be any bits. Then (by ®by) ® by = by.

Sanity check! Write out the truth table for (b @ by) @ b, and verify that it equals by .

This result generalizes to bit strings:

Corollary 7.1. Let x and y be length n bit strings. Then (x®y) &y = x.

Proof. Let x; be the ith bit of x and y; be the ith bit of y. The ith bit of (x@®y) By is (x; Dy;) D y;; by Lemma
7.1, this is just x;. Hence each bit of (x @ y) ¢y matches x, so we have (x@®y) By = x. O

2.2 One-Time Pad

From the properties in the previous section, we can define our first private-key protocol, known as the
one-time pad protocol, or OTP for short. This and other protocols can be viewed as happening in three
stages: setup (where keys are decided and disseminated), encryption, and decryption. We describe how
OTP functions in these three stages below, assuming that Alice wants to securely send Bob a message
encoded in a length n bit string.

Setup: Alice and Bob agree on a length n bit string p, known as the pad, and keep it secret.
Encryption: To encrypt a message m into a ciphertext ¢, Alice evaluates E,(m) = m® p.
Decryption: To decrypt a ciphertext c into a message m, Bob evaluates D, (c) = c® p.

A natural question to ask now is how do we evaluate how good of a protocol this is? What exactly do we
want out of a cryptosystem? For this note, we will be focusing on two properties: correctness, meaning that
Bob will in fact receive Alice’s message after decryption, and security, meaning that Eve will not be able to
determine what message Alice sent.

Sanity check! Why is a system without correctness not interesting? What about a system without security?

Theorem 7.1. The OTP protocol is correct. That is, for any pad p and message m, D,(E,(m)) = m.

Proof. This is an immediate consequence of Corollary 7.1. Indeed, since E,(m) =m@® p and D,(c) = c® p,
we have D, (E,(m)) = (m@® p) @ p, which is just m by Corollary 7.1. O

There are many ways one might define security. For example, suppose that Eve could determine the first
bit of m from E(m) but nothing else. One could reasonably argue that this is secure or that it is not secure
depending on the use case. Or alternatively, suppose that Eve could determine m from E(m), but it would
take her approximately 102 years to do so. One could reasonably define this to be secure or not secure.

"'While 1020 years is a long time, it is possible that advances in computing can cut down on the required time significantly.
Indeed, many systems considered secure around the advent of modern cryptography have needed to add additional security to keep
up with the speed of potential adversaries.

CS 70, Summer 2019, Note 7 2

As it turns out, the OTP protocol has the best kind of security you could hope for: if Eve knows nothing
about the pad p, she gains no information about m from E,(m)! Formally, we have the following theorem

Theorem 7.2. Let m be any message and c be any ciphertext. Then there exists a pad p such that E,(m) = c.
Proof. Take p = ¢ @®m. We then have that E,(m) = (¢ © m) @ m, which by Corollary 7.1 is just c. O

Why does Theorem 7.2 guarantee us security? Suppose that Eve has intercepted some ciphertext c, but does
not know what the pad p used was. Given any message m, Theorem 7.2 tells us that there is a pad p that
would make m encrypt to ¢, so every possible message is consistent with what Eve has seen! Thus, Eve
has no reason to believe the message sent was one possibility over any other; in other words, she gains no
information about m.

3 Public Key Cryptography

While the previous section gave us a system which was correct and perfectly secure, there are some issues
with private key cryptography. By far the biggest is that Alice and Bob need some way to agree on their
secret key such that no one else finds out about it. But if they have some secure way of sharing this key, they
could just use that to share their messages in the first place!

This problem is even worse in the case of the one-time pad protocol. As suggested by the name, in order to
maintain security, Alice and Bob can only use a pad one time. If they try using the same pad multiple times,
it may leak some information about their messages to Eve. Thus, Alice and Bob need to invoke their secure
key-sharing protocol every time they want to send messages to one another.

In order to avoid these issues, we will attempt to create a public-key protocol. In these sorts of protocols, we
will replace the shared private key with two keys: one private one known only to Bob, and one public one
publicized to everyone. When Alice wishes to send a message to Bob, she will encrypt it using his public
key; Bob can then decrypt the message using his private key. Thus, anyone in the world can send Bob a
message, but since only Bob knows the private key, he is the only one who can decrypt those ciphertexts.

3.1 RSA

As an example of a public-key protocol, we describe the RSA cryptosystem, named after its inventors Ronald
Rivest, Adi Shamir, and Leonard Adleman. As with the one-time pad procedure, we consider RSA in three
stages:

Setup: Bob generates two distinct primes p and g, as well as a number e relatively prime to (p — 1)(g—1).
Bob calculates d = e~! (mod (p—1)(g—1)) and N = pq. Bob publicizes (N,e), and keeps d secret.

Encryption: Given Bob’s public key (N, e), Alice encrypts m as Ey .(m) =m® (mod N).
Decryption: Since Bob knows his private key d, he can decrypt ¢ as Dy 4(c) = ¢? (mod N).

How big should p and g be? Since our encryption and decryption are done modulo N, we certainly need
to make sure N is bigger than our message in order to have any hope at unique decryption. Thus, if we
wish to send an n bit message, we should ensure that N is at least 2”. Additionally, as we will see later, the
security of this protocol gets better as p and g get larger. For current real-world applications, p and g are
often chosen to be 512 bit numbers in order to have sufficient security.

CS 70, Summer 2019, Note 7 3

32 RSA Correctness

As before, in order to show that RSA is an interesting protocol, we need to show that it is correct, meaning
that Bob will always get the message Alice sent. The proof of this fact relies heavily on Fermat’s Little
Theorem, which we stated and proved in note 6.5. For reference, it is reproduced below:

Theorem 7.3. Let p be a prime and a Z0 (mod p). Then a’~' =1 (mod p).

Theorem 7.4. The protocol described in Section 3.1 is correct. That is, for any choice of p, q, and e, and
for any message m, we have that Dy 4(En .(m)) = m.

Proof. We first note that Dy 4(Ey .(m)) = (m°)? (mod N) =m* (mod N). In the setup phase we defined
dtobee ! (mod (p—1)(g—1)),s0ed =1 (mod (p—1)(g—1)), and hence ed = 1 +k(p—1)(g—1) for
some integer k.

Let’s now consider what happens if we take m°? modulo p. Plugging in the above value for ed, we have
med = m"HHP=D@=1) — . (mP=1)*a=D_ 1f m =0 (mod p), this will evaluate to zero mod p. Otherwise,
Theorem 7.3 tells us that m”~! is equivalent to 1 modulo p, and hence the whole thing will just simplify to
m. In either case, we have that m* =m (mod p).

We can use exactly the same argument to show that m* = m (mod ¢). Thus, in order to determine the

value of m*¢ (mod pq), we simply need to find a value which is equivalent to 7 mod p and mod g. Setting
m* =m (mod pq) certainly satisfies both these equivalences — and by the Chinese Remainder Theorem
from note 6.5, this is the only value modulo pq that satisfies both of them. Thus, we must in fact have that
mel =m (mod N); since we chose p and g such that N > m, this means that m® mod N = m, and hence we
indeed will correctly decrypt.?

O]

3.3 RSA EfEciency

In addition to correctness, we should also make sure that our protocol is efficient for both Alice and Bob.
For security reasons (as discussed in the next section), we will generally make p and ¢ 512-bit numbers.
Thus, in order to ensure that Alice and Bob can send their messages in a reasonable amount of time, we
should make sure that all operations can be done in time related to the number of bits in p and ¢, rather than
related to p and g themselves.

Looking at the protocol in Section 3.1, there are three non-trivial operations Alice and/or Bob have to
perform: (1) Bob has to choose primes p and ¢, (2) Bob has to find the inverse of e mod (p —1)(¢— 1), and
(3) both Alice and Bob need to perform modular exponentiations.

For the first task, we will rely on the following theorem, though it is beyond our scope to prove it:

Theorem 7.5. [Prime Number Theorem] Let 7t(n) denote the number of primes that are less than or equal
to n. Then for all n > 17, we have t(n) > ~. (And in fact, lim,_) _ 1.)

= Inn n/Inn

What this tells us is that if we just choose a random 512-bit number, the chance of it being prime is approx-
imately m ~ 3;—5 so we are likely to find a prime within a few hundred guesses. Note that for this, we

also need a way of testing if a number is prime. Many algorithms exist for this task; you can search for
“primality testing” if you are interested in reading more about them.

20ne can also give a version of this proof that does not explicitly use CRT. Using similar methods to this proof, we can show
that m@ — m is zero modulo both p and ¢, and hence is divisible by both. Since p and g are distinct primes, being divisible by both
of them means you must be divisible by their product, so m¢/ —m =0 (mod N), and hence m** = m (mod N).

CS 70, Summer 2019, Note 7 4

For the second point, we recall from Note 6 that the extended version of Euclid’s GCD algorithm allows us
to compute inverses, where the number of recursive calls made is within a constant factor of the number of
bits in the number we wish to take the inverse of. Thus, this too can be done efficiently.

Finally, we consider the problem of modular exponentiation. We again go think back to Note 6 and recall the
repeated squaring procedure, which allows us to calculate x’ (mod m), where the number of recursive calls
is the number of bits in y. Since our exponents will always be at most N (and indeed, at most (p—1)(g— 1)),
this will also be efficient even for very large values of p and q.

3.4 RSA Security

We now finally turn to the question of whether or not RSA is secure. At this point, we reach a surprising
answer: we don’t know. To date, no one has publicly found a proof that this system cannot be broken — but
at the same time, many people have been working very hard to break it, and as far as we know, no one has
succeeded! Formally, the security of RSA rests upon the following assumption:

Given N, e and ¢ = m® mod N, there is no efficient algorithm for determining m.

This assumption is quite plausible. How might Eve try to guess m? She could experiment with all possible
values of m, each time checking whether m® = ¢ mod N; but she would have to try on the order of N values
of m, which is completely unrealistic if N is a number with (say) 512 bits. Alternatively, she could try to
factor N to retrieve p and ¢, and then figure out d by computing the inverse of ¢ mod (p —1)(g — 1); but
this approach requires Eve to be able to factor N into its prime factors, a problem which is believed to be
impossible to solve efficiently for large values of N. We should point out that this does not constitute a proof
that RSA is secure (indeed, there may be a very clever way of breaking it that we didn’t consider here!), but
it does strongly suggest the scheme is secure. And indeed, enough people believe RSA to be secure that it
forms the backbone of much of modern e-commerce and online security!

As a side note, it turns out that while no one has yet come forward with a way to break RSA using a classical
computer, it is known how to factor numbers, and thus how to break RSA, using a guantum computer. The
details of this are well beyond the scope of our course, but it does suggest that RSA’s days are numbered.
While current quantum computers are too small to realistically break 512-bit RSA, in the future that may no
longer be the case, requiring us as computer scientists to devise new methods to ensure online security.

4 RSA: Beyond Textbook

What we discussed in the previous section is often referred to as fextbook RSA — it distills the essence of
what the protocol is doing in such a way that it is relatively easy to describe and prove properties about.
However, uses of RSA in the real world tend to look somewhat different from what we have described
here. In this section, we describe two real-world attacks that get around the security of RSA, along with an
alternate application of the RSA protocol.

4.1 Replay Attacks

For our first attack against textbook RSA, consider the following situation: you wish to send your credit
card information to Amazon (or some other online retailer) so as to make a purchase. You have Amazon’s
public key, so you can encrypt your credit card number m as Ey .(m) and send it along.

But now what happens if Eve is eavesdropping on your message to Amazon? She now has access to Ey . (m),
so when Amazon asks for her credit card number, she can reply with that — effectively allowing her to use
your credit card despite not explicitly knowing its number!

CS 70, Summer 2019, Note 7 5

This type of attack is what is known as a replay attack, since an eavesdropper is replaying a message they saw
before in the hopes of passing it off as real. In order to avoid these sorts of issues, we can add randomness
to the end of our messages. Formally, instead of sending Ey .(m), we send Ey .(m||r) where r is a random
string of predetermined length and m||r denotes the concatenation of m and r. Now if Eve tries to replay a
previously seen message, Amazon will notice that the random string at the end of her message is the same
as that at the end our ours, and so can reject her attempted forgery.

4.2 Application: Digital Signatures

Before discussing the second type of attack, we first introduce a situation where it is likely to come up. Up
to this point, we’ve been using Bob’s private key to ensure that he is the only person who can decrypt a
message sent to him. But it turns out that we can also use it as a proof of identity; that is, Bob can use his
private key to prove that he was actually the person who sent a message.

One naive way to do this would be to have Bob include his private key d as part of his message. However,
this has the problem of revealing Bob’s private key, which is always a bad idea. After all, this method may
work once, but then Bob’s private key is compromised, so he would have to generate a new one — and any
encrypted messages Bob previously received can now be decrypted by anyone.

Being a little bit more clever, we can instead sign a message m using Dy 4(m); that is, we pretend that m is
actually a ciphertext and sign with whatever it would end up decrypting to. For Bob, this is easy to do, as
he knows d. Additionally, it is easy for Bob’s recipient to verify that the signature is valid: a signature s for
a message m is valid if and only if s = m (mod N) by a proof similar to that of Theorem 7.4. However,
someone who is not Bob cannot forge a signature for arbitrary messages, as that would be equivalent to
being able to decrypt arbitrary ciphertexts, which is impossible under the assumption that RSA is secure.

4.3 Digital Signature Attack

One thing you may have noticed about our scheme for digital signatures is that while it may be hard to forge
arbitrary signatures, some are quite easy to form. In particular, even without knowing d, one can sign the
message m = 0 or m = 1, as m? = m for these values of m regardless of what d is. Hence, we might figure
that if we want to be sure Bob is really Bob, we should choose what message he has to sign.

Unfortunately, this opens up a vulnerability in our system. In particular, suppose Eve previously intercepted
some ciphertext ¢ intended for Bob. She chooses a random number r and asks Bob to sign the message rc
(mod N). Bob doesn’t know how she came up with that message, and sees nothing suspicious about it, so
he happily signs it. But now his signatures is (r°c)? (mod N), which is just 7*c? (mod N). By Theorem
74,7’ =r (mod N) and ¢¢ =m (mod N) (where m is the original message that lead to the ciphertext c),
so Eve now has access to rm (mod N).

But now Eve knows r and N, so if she was clever enough to choose r coprime to N (which can be checked
using Euclid’s GCD algorithm), she can use the extended version of Euclid’s algorithm to find ¥~ (mod N).
Multiplying this by Bob’s signature gives her the plaintext message m! This tells us that we have to be careful
when designing our digital signature system to ensure that we don’t accidentally break our own encryption
in the process.

CS 70, Summer 2019, Note 7 6

