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1 Polynomials
Polynomials constitute a rich class of functions which are both easy to describe and widely applicable
in topics ranging from Fourier analysis, cryptography and communication to control and computational
geometry. In this note, we will discuss properties of polynomials which make them so useful. We will then
describe how to take advantage of these properties to develop a secret sharing scheme.

Recall from your high school math that a polynomial in a single variable is a function of the form p(x) =
cdxd + cd−1xd−1 + . . .+ c1x+ c0. Here the variable x and the coefficients ci are usually real numbers. For
example, p(x) = 5x3+2x+1, is a polynomial of degree d = 3. Its coefficients are c3 = 5, c2 = 0, c1 = 2, and
c0 = 1. Polynomials have some remarkably simple, elegant and powerful properties, which we will explore
in this note.

First, a definition: we say that a is a root of the polynomial p(x) if p(a) = 0. For example, the degree
2 polynomial p(x) = x2− 4 has two roots, namely 2 and −2, since p(2) = p(−2) = 0. If we plot the
polynomial p(x) in the x-y plane, then the roots of the polynomial are just the places where the curve crosses
the x axis:

We now state two fundamental properties of polynomials that we will prove in due course.

Property 1: A non-zero polynomial of degree d has at most d roots.

Property 2: Given d+1 pairs (x1,y1), . . . ,(xd+1,yd+1), with all the xi distinct, there is a unique polynomial
p(x) of degree (at most) d such that p(xi) = yi for 1≤ i≤ d +1.

Let us consider what these two properties say in the case that d = 1. A graph of a linear (degree 1) polynomial
y = c1x+ c0 is a line. Property 1 says that if a line is not the x-axis (i.e. if the polynomial is not y = 0), then
it can intersect the x-axis in at most one point (as on the left below), though it may also never intersect the
x-axis (as on the right below).
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Property 2 says that two points uniquely determine a line. This means that the line in the figure below is the
only one which passes through the points (1,1) and (3,2).

1.1 Polynomial Division
Let’s take a short digression to discuss polynomial division, which will be useful in the proof of Property 1.
If we have a polynomial p(x), we can divide it by a polynomial d(x) using “polynomial long division”, so
named because it mimics the kind of long division for natural numbers taught in elementary schools. The
result will be:

p(x) = q(x)d(x)+ r(x)

where q(x) is the quotient and r(x) is the remainder. The degree of r(x) must be smaller than that of d(x).

Example. We wish to divide p(x) = x3 + x2−1 by d(x) = x−1:

• First we subtract a factor x2(x−1) to write: p(x) = x2(x−1)+(2x2−1).

• Then we subtract a factor 2x(x−1) to write the remainder as 2x2−1 = 2x(x−1)+(2x−1).

• Then we subtract a factor 2(x−1) to write the remainder as 2x−1 = 2(x−1)+1.

• Finally, putting the above three lines together, we get that p(x) = (x2 +2x+2)(x−1)+1.

Therefore, the quotient is q(x) = x2 +2x+2 and the remainder is r(x) = 1.

We can also write this out in a form perhaps more familiar as long division:
x2 +2x+2

x−1
)

x3 + x2 −1
− x3 + x2

2x2

−2x2 +2x

2x−1
−2x+2

1

The important thing to note here is that we can do this for any polynomials p(x) and d(x). Thus, no
matter what polynomials p and d we choose, we can find a “quotient” q and a “remainder” r such that
p(x) = d(x)q(x)+ r(x).

1.2 Proof of Property 1
Now that we know how to divide polynomials, we can prove property 1: a non-zero polynomial of degree d
has at most d roots. In order to get there, we need the following lemma:
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Lemma 8.1. Let p(x) be a non-zero polynomial, and let a be a root of p. Then p(x) can be written as
(x−a)q(x), where q is a non-zero polynomial of degree one less than that of p.

Proof. From Section 1.1, we know that p(x) can be written as (x−a)q(x)+ r(x), where r(x) has degree less
than that of x−a. But since x−a has degree 1, this is only possible if r(x) is a constant polynomial; that is,
r(x) = c for some constant c.

Now consider what happens if we evaluate p at a. We have that p(a) = (a− a)q(a)+ r(a). The first term
is just zero, so we’re left with p(a) = r(a). But we know p(a) = 0 as a is a root of p, and we previously
said that r(x) = c for all x, a included. Thus, we must have that c = 0, and hence r(x) is actually the zero
polynomial.

Plugging this back in, we get that p(x) = (x− a)q(x)+ 0 = (x− a)q(x) as desired. To see that q has the
required degree, we note that the degree of the product of two polynomials is the sum of their respective
degrees; thus, the degree of p(x) = (x−a)q(x) is the degree of q(x) plus one.

We are now equipped to prove the first property of polynomials.

Theorem 8.1. Let p be a non-zero polynomial of degree d. Then p has at most d roots.

Proof. We proceed by induction on d. The base case is when d = 0, and hence p is a constant polynomial.
Since we know p is non-zero, we must have that p(x) = c for some constant c 6= 0. Hence, p(x) is never
zero, and so has zero roots as desired.

For the inductive step, suppose that the claim holds for polynomials of degree k, and let p be any polynomial
of degree k+ 1. If p has no roots, it certainly has no more than k+ 1 roots, so we are immediately done.
Otherwise, Lemma 8.1 tells us that p(x) = (x−a)q(x) where a is a root of p and q has degree k. We know
that the product of two non-zero numbers is always non-zero, so p(x) can only be zero when either (x−a)
or q(x) are. But q(x) has degree k, and hence by the inductive hypothesis can have at most k roots; (x−a)
is only zero at x = a. Thus, there are at most k+1 points where p(x) is zero.

1.3 Polynomial Interpolation
Property 2 says that two points uniquely determine a degree 1 polynomial (a line), three points uniquely
determine a degree 2 polynomial, four points uniquely determine a degree 3 polynomial, and so on. In order
to do this, we will need to show two things: firstly that given any set of d +1 points, there is a polynomial
that goes through them, and secondly that such a polynomial is unique. In this section, we consider the first
problem, and in fact give a way of constructing a polynomial that passes through any sequence of points
(x1,y1),(x2,y2), ...,(xd+1,yd+1).

The method we use is called Lagrange interpolation. Let us start by solving an easier problem. Suppose
that we are told that y1 = 1 and y j = 0 for 2 ≤ j ≤ d +1. Now can we reconstruct p(x)? Yes, this is easy!
Consider q(x) = (x− x2)(x− x3) · · ·(x− xd+1). This is a polynomial of degree d (the xi’s are constants,
and x appears d times). Also, we clearly have q(x j) = 0 for 2 ≤ j ≤ d + 1. But what is q(x1)? Well,
q(x1) = (x1−x2)(x1−x3) · · ·(x1−xd+1), which is some constant not equal to 0 (since the xi are all distinct).
Thus if we let p(x) = q(x)/q(x1) (dividing is ok since q(x1) 6= 0), we have the polynomial we are looking
for. For example, suppose you were given the pairs (1,1), (2,0), and (3,0). Then we can construct the
degree d = 2 polynomial p(x) by letting q(x) = (x−2)(x−3) = x2−5x+6, and q(x1) = q(1) = 2. Thus,
we can now construct p(x) = q(x)/q(x1) = (x2−5x+6)/2.
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Of course, the problem is no harder if we single out some arbitrary index i instead of 1: i.e. yi = 1 and y j = 0
for j 6= i. Let us introduce some notation: let us denote by ∆i(x) the degree d polynomial that goes through
these d +1 points. Then ∆i(x) =

Π j 6=i(x−x j)
Π j 6=i(xi−x j)

.

Let us now return to the original problem. Given d +1 pairs (x1,y1), . . . ,(xd+1,yd+1), we first construct the
d+1 polynomials ∆1(x), . . . ,∆d+1(x) as described above. Now we can write p(x) = ∑

d+1
i=1 yi∆i(x). Why does

this work? First notice that p(x) is a polynomial of degree d as required, since it is the sum of polynomials
of degree d. And when it is evaluated at xi, d of the d + 1 terms in the sum evaluate to 0 and the i-th term
evaluates to yi times 1, as required.

In the above construction, we can think of the polynomials ∆i(x) as a “basis” for all polynomials whose
values are specified at the points {x j}. Note that these basis polynomials depend only on the x j, and not on
the values y j at the points. We then sum the basis polynomials ∆i, with coefficients equal to the values yi, to
construct the desired polynomial p(x).

As an example, suppose we want to find the degree-2 polynomial p(x) that passes through the three points
(x1,y1) = (1,1), (x2,y2) = (2,2) and (x3,y3) = (3,4). The three polynomials ∆i are as follows:

∆1(x) =
(x−2)(x−3)
(1−2)(1−3)

=
(x−2)(x−3)

2
=

1
2

x2− 5
2

x+3;

∆2(x) =
(x−1)(x−3)
(2−1)(2−3)

=
(x−1)(x−3)

−1
=−x2 +4x−3;

∆3(x) =
(x−1)(x−2)
(3−1)(3−2)

=
(x−1)(x−2)

2
=

1
2

x2− 3
2

x+1.

The polynomial p(x) is therefore given by

p(x) = 1 ·∆1(x)+2 ·∆2(x)+4 ·∆3(x) =
1
2

x2− 1
2

x+1.

You should verify that this polynomial does indeed pass through the above three points.

1.4 Proof of Property 2
We are now in a position to prove Property 2 stated earlier.

Theorem 8.2. d+1 points uniquely determine a degree (at most) d polynomial. That is, given any sequence
of points (x1,y1), ...,(xd+1,yd+1) such that all x values are distinct, there exists a unique polynomial p(x) of
degree (at most) d such that p(xi) = yi for each 1≤ i≤ d +1.

The previous section immediately tells us that such a polynomial will exist — but how do we know it is
unique? The basis for this will be a corollary to Theorem 8.1, as stated below:

Corollary 8.1. Let p and q be two distinct polynomials of degree at most d. Then p(x) = q(x) for at most d
values of x.

Proof. Consider the polynomial p−q. Since p and q are distinct, it will be a non-zero polynomial of degree
at most d. Hence, by Theorem 8.1, there are at most d points where (p− q)(x) = 0. But this means there
are at most d points where p(x)−q(x) = 0, and hence at most d points where p(x) = q(x).

We can now fully prove property 2.
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Proof of Theorem 8.2. Let (x1,y1), ...,(xd+1,yd+1) be any sequence of points with distinct x values. Apply-
ing the algorithm from Section 1.3, we get a polynomial p of degree at most d such that p(xi) = yi for each
1≤ i≤ d+1. By Corollary 8.1, any other degree d polynomial q can only agree with p on at most d points,
so there must exist some i such that q(xi) 6= p(xi) = yi. Hence, p is the only polynomial of degree at most d
that goes through all d +1 points.

2 Finite Fields
Up to this point, we have been considering polynomials over the real numbers; that is, we have allowed all
coefficients, all inputs, and all outputs to be any real number. However, this can pose a problem if we tried
implementing algorithms with polynomials on a computer. After all, a real number may require an infinite
number of digits to represent, but we only have a finite amount of space on any real computer. Thus, we
would have to round any real numbers used to a finite amount of precision, which could cause errors in our
answers to build up.1

Given the drawbacks of real numbers, it behooves us to take a step back and consider why we were using
real numbers in the first place — what properties of the reals did we actually need, and what can we do
without? Looking back at the previous sections, there are two main properties that we used:

1. We can add, subtract, multiply, or divide any two numbers, so long as we do not divide by zero.

2. Multiplying two non-zero numbers always results in a non-zero number.

Thus, if we choose any model of arithmetic that has these two properties, we can work with polynomials in
exactly the same way as we did over the real numbers. Thinking back to note 6, we notice that the numbers
modulo a prime p do indeed hit both these points!2 Furthermore, we only need a finite number of bits to
represent a number modulo p, meaning that we never have any concerns about round-off error.

Let us consider an example of degree d = 1 polynomials modulo 5. Let p(x) = 2x+3 (mod 5). The roots of
this polynomial are all values x such that 2x+3≡ 0 (mod 5) holds. Solving for x, we get that 2x =−3≡ 2
(mod 5), and thus x = 1 (mod 5). Note that this is consistent with Property 1 since we got only one root of
a degree-1 polynomial.

Now consider the polynomials p(x) = 2x+3 (mod 5) and q(x) = 3x−2 (mod 5). We can plot the values y
of each polynomial as a function of x in the x-y plane. Since we are working modulo 5, there are only 5
possible choices for x, and only 5 possible choices for y:

1Indeed, there is an entire field of mathematics devoted to figuring out how to implement calculations over the real numbers
using finite precision computers, known as numerical analysis. For more on this, see Math 128A.

2More generally, we can work over any field, such as the complex numbers or the rationals. We will not here go into what
precisely a field is, except that it effectively captures the qualities we want out of arithmetic over the real numbers, such as being
able to find multiplicative inverses, having multiplication distribute over addition, and so forth. For a more detailed look at fields,
see Math 113.
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Notice that these two “lines" intersect in exactly one point, even though the picture looks nothing at all
like lines in the Euclidean plane! Looking at these graphs it might seem remarkable that both Property 1
and Property 2 hold when we work modulo p for any prime number p. But as we stated above, arithmetic
modulo p has all the facts necessary to prove Properties 1 and 2.

As a word of warning, it is important that our modulus is prime. Indeed, if our modulus is composite, neither
property 1 nor property 2 are guaranteed to hold.

As a counterexample to property 1, consider the polynomial (x− 2)(x− 3) (mod 6). This is a non-zero
degree 2 polynomial, yet it has 4 roots: 0, 2, 3, and 5. Here, the reason property 1 is breaking down is
because of the existence of zero divisors; that is, we have non-zero numbers (in this case 2 and 3) whose
product is zero. In the proof of Theorem 8.1, we critically used that (x− a)q(x) is only zero when either
x−a or q(x) is zero, but that is no longer the case if our modulus is composite.

For a counterexample to property 2, consider the set of two points (0,0) and (3,1) modulo 6. There is in fact
no polynomial of degree 1 passing through these points. To see why this is, note that in order for a degree 1
polynomial p to pass through (0,0), we must have that p(x) = cx for some constant c. But then if p(3) = 1,
we would have to have that c3≡ 1 (mod 6), which is impossible as 3 does not have an inverse modulo 6. In
this case, the issue is a lack of multiplicative inverses, which prevents us from applying our algorithm from
Section 1.3.

We finish this section with a note on terminology. To highlight the fact that the numbers modulo p “have the
properties we want from the reals” (ie, are a field) despite only having a finite number of elements, we will
often call them “finite fields”. They are sometimes also referred to as Galois Fields, in honor of Évariste
Galois, abbreviated GF(p) where p is the prime we are working modulo.

3 Counting
How many polynomials of degree (at most) 2 are there modulo m? This is easy: there are 3 coefficients,
each of which can take on one of m values for a total of m3. Writing p(x) = cdxd + cd−1xd−1 + . . .+ c0 by
specifying its d +1 coefficients ci is known as the coefficient representation of p(x). Is there any other way
to specify p(x)?

Sure, there is! Our polynomial of degree (at most) 2 is uniquely specified by its values at any three points,
say x = 0,1,2. Once again, the polynomial can take any one of m values at each of these three points, for a
total of m3 possibilities. In general, we can specify a degree d polynomial p(x) by specifying its values at
d +1 points, say 0,1, . . . ,d. These d +1 values, (y0,y1, . . . ,yd), are called the value representation of p(x).
The coefficient representation can be converted to the value representation by evaluating the polynomial at
0,1, . . . ,d. And, as we’ve seen, Lagrange interpolation can be used to convert the value representation to the
coefficient representation.

So if we are given three pairs (x1,y1),(x2,y2),(x3,y3) then there is a unique polynomial of degree 2 such
that p(xi) = yi. But now, suppose we were only given two pairs (x1,y1),(x2,y2); how many distinct degree-2
polynomials are there that go through these two points? Notice that there are exactly m choices for y3, and
for each choice there is a unique (and distinct) polynomial of degree two that goes through the three points
(x1,y1),(x2,y2),(x3,y3). It follows that there are exactly m polynomials of degree at most 2 that go through
two points (x1,y1),(x2,y2), as shown below:

What if you were only given one point (x1,y1)? Well, there are m2 choices for y2 and y3, yielding m2 poly-
nomials of degree at most 2 that go through the point given. A pattern begins to emerge, as is summarized
in the following table:
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Polynomials of degree ≤ d over Fm

# of points # of polynomials
d +1 1

d m
d−1 m2

...
...

d− k mk+1

...
...

0 md+1

Note that the reason that we can count the number of polynomials in this setting is because we are working
over a finite field. If we were working over an infinite field such as the reals, there would be infinitely
many polynomials of degree d that can go through d points! Think of a line, which has degree one. If you
were just given one point, there would be infinitely many possibilities for the second point, each of which
uniquely defines a line.

4 Secret Sharing
In the late 1950’s and into the 1960’s, during the Cold War, President Dwight D. Eisenhower approved
instructions and authorized top commanding officers for the use of nuclear weapons under very urgent
emergency conditions. Such measures were set up in order to defend the United States in case of an attack
in which there was not enough time to confer with the President and decide on an appropriate response. This
would allow for a rapid response in case of a Soviet attack on U.S. soil. This is a perfect situation in which
a secret sharing scheme could be used to ensure that a certain number of officials must come together in
order to successfully launch a nuclear strike, so that for example no single person has the power and control
over such a devastating and destructive weapon. Suppose the U.S. government finally decides that a nuclear
strike can be initiated only if at least k > 1 major officials agree to it. We want to devise a scheme such that
both of the following properties hold:

1. Any group of k of these officials can pool their information to figure out the launch code and initiate
the strike.

2. No group of k− 1 or fewer have any information about the launch code, even if they pool their
knowledge. For example, they should not learn whether the secret is odd or even, a prime number,
divisible by some number a, or the secret’s least significant bit.

How can we accomplish this?
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Suppose that there are n officials indexed from 1 to n and the launch code is some natural number s. Let q
be a prime number larger than n and s. We will work over GF(q) from now on.

Now pick a random polynomial3 p(x) of degree k−1 such that p(0) = s and give p(1) to the first official,
p(2) to the second,. . . , p(n) to the nth. Then we have:

1. Any k officials, having the values of the polynomial at k points, can use Lagrange interpolation to find
p, and once they know what p is, they can compute p(0) = s to learn the secret.

2. Any group of k−1 (or fewer) officials has no information about s. To see this, observe that they know
only k−1 points through which p(x), an unknown polynomial of degree k−1, passes. They wish to
reconstruct p(0) = s. But by our discussion in the previous section, for each possible value p(0) = b,
there is a unique polynomial of degree k−1 that passes through the k−1 points that the k−1 officials
have as well as through (0,b). Hence the secret could be any of the q possible values {0,1, . . . ,q−1},
so the officials have—in a very precise sense—no information about s. Another way of saying this is
that the information of the officials is consistent with q different value representations, one for each
possible value of the secret, and thus the officials have no information4 about s.

Example. Suppose you are in charge of setting up a secret sharing scheme, with secret s = 1, where you
want to distribute n = 5 shares to 5 people such that any k = 3 or more people can figure out the secret, but
two or fewer cannot. Let’s say we are working over GF(7) (note that 7 > s and 7 > n) and you randomly
choose the following polynomial of degree k−1 = 2 : P(x) = 3x2 +5x+1 (here, P(0) = 1 = s, the secret).
So you know everything there is to know about the secret and the polynomial, but what about the people
that receive the shares? Well, the shares handed out are P(1) = 2 to the first official, P(2) = 2 to the second,
P(3) = 1 to the third, P(4) = 6 to the fourth, and P(5) = 3 to the fifth official. Let’s say that officials 3,
4, and 5 get together (we expect them to be able to recover the secret). Using Lagrange interpolation, they
compute the following delta functions:

∆3(x) =
(x−4)(x−5)
(3−4)(3−5)

=
(x−4)(x−5)

2
= 4(x−4)(x−5);

∆4(x) =
(x−3)(x−5)
(4−3)(4−5)

=
(x−3)(x−5)

−1
= 6(x−3)(x−5);

∆5(x) =
(x−3)(x−4)
(5−3)(5−4)

=
(x−3)(x−4)

2
= 4(x−3)(x−4).

They then compute the polynomial over GF(7): P(x) = (1)∆3(x) + (6)∆4(x) + (3)∆5(x) = 3x2 + 5x+ 1
(verify the computation!). Now they simply compute P(0) and discover that the secret is 1.

Now notice that if only officials 3 and 5 got together, they would be able to interpolate a polynomial through
their points and (0,b) for any value of b. Thus, they can do no better than randomly guessing the secret,
which anyone could have done even with no information at all.

3Based on our previous discussion, we should note that there are two equivalent ways of choosing a random polynomial. Using
the coefficient representation, we can randomly choose coefficients ck−1, ...,c1, noting that c0 must be the secret. Alternatively, we
could use the value representation of a polynomial and randomly choose values for p(1), p(2), ..., p(k−1), noting that p(0) is fixed
to be the secret.

4Note that this is one reason we choose to work over finite fields rather than, say, over the real numbers, where the basic secret-
sharing scheme would still work. Because there are only finitely many values in our field, we can quantify precisely how many
remaining possibilities there are for the value of the secret, and show that this is the same as if the officials had no information at
all.

CS 70, Summer 2019, Note 8 8


