CS 70 Discrete Mathematics and Proloa]oility Theory
Summer 2019 Course Notes BOHUS Note 1

This note is adapted from Section 1.3 of “Mathematical Logic” by Theodore Slaman and William Woodin.

1 Formal Proof Systems

In this note, we discuss formal proof systems, distinguished from the human-readable proofs we’ve worked
with so far. The goal is to create a system expressive enough to prove everything we want, and yet have
only very simple rules. This limited set of rules means it is quite easy for a program to understand or check
proofs — imagine trying to do this with the human readable proofs we’ve done so far! Additionally, as we
will see, limiting what we are able to do in a proof makes it tractable for us to prove what can and cannot be
done in such a system, a herculean task for the types of proofs we’ve seen before.

For the purposes of this note, we will only be considering proofs in propositional logic, meaning there won’t
be any quantifiers. It is possible to consider a logical system where quantifiers are allowed (this is called
first-order logic), but that is much more complicated.

1.1 Logical Axioms

In order to prove anything, we need axioms, which are statements taken to be the basis of truth.! For our
purposes, we will use various properties of = as our axioms, as written below. These axioms may seem
like a wall of notation at first, but don’t be intimidated—we explain them all in English below.

Note: in each of these axioms, @1, ¢, and @3 can be any propositional formulae
D o = ¢

2 o = (2 = ¢1)

G) o = [(~1) = ¢

@ (o) = o] = o

G) (o) = (o = )

©) ¢ — ([wz] = [~ = <Pz)])

D) (o = (2 = ;)] = [(¢1 = @) = (¢ = ¢3)]

We rephrase each axiom in English:

(1) If @y is true, ¢y is true.

(2) If ¢y is true, anything implies it.

(3) If ¢y is true, its negation vacuously implies anything.

'From high school, you may remember the axioms of Euclidean geometry!

CS 70, Summer 2019, Bonus Note 1

s



(4) The only way for (—¢;) to imply ¢; is if ¢, is true.

(5) If ¢y is false, it vacuously implies anything.

(6) Suppose ¢y is true. Then if @, is false, ¢; cannot imply ¢,.

(7) Suppose that if ¢ is true, @, implies ¢3. Then if we also have that ¢; implies ¢,, ¢ must imply ¢s.

Sanity check! Can you see why each of these axioms is true? For any you are unconvinced about, write out
a truth table and verify the axiom is true regardless of what truth values ¢;, ¢, and @3 take on.

A natural question to ask at this point is why we chose these exact axioms, as they seem quite arbitrary. One
answer to this question is that this set of axioms suffices to make our system complete, meaning effectively
that any “true” statement is provable.”

We certainly could have included more axioms and still had this property, but this would make our axiom
list more cumbersome. As it turns out, we also could actually get away with fewer axioms (we show in the
appendix to this note that axiom 1 is provable from the other axioms), though this would make the proof
that the system is complete less clean. Thus, the second answer to the question of “why these axioms” is
that they are a balancing act between these two extremes.

12 Forma] PI‘OOlCS

Now that we have our set of axioms, we can proceed with defining what a proof looks like. To start off any
proof, in addition to our axioms, we have some set I" of formulae which are known to be true.

Definition B1.1. Let I be a set of formulae and @ be a formula. A proof of ¢ from I is a sequence of
Sformulae (@1, @, ..., ®,) such that @, = @ and for each 1 <i < n, at least one of the following hold:

(1) @; is an axiom

(2) gjisinT’

(3) There exist indicies j and k smaller than i such that @y is ¢; = @;

We say @ is provable from 1" (denoted I = @) if there exists a proof of ¢ fromI.

Point (3) in the above definition is a logical deduction rule known as Modus Ponens. Effectively, it says that
if I know A implies B and I know A is true, I also know B is true.

We now give an example of what one of these proofs would look like. In particular, we are going to show
that from {—(—P))}, we can prove P, where P is some proposition.

Proof:

(1) [-(=P)] = [(-P) = P] (Axiom 5, with ¢, = —P and ¢ = P)
@) [(-P) = P| = P (Axiom 4, with @ = P)
(3) ~(~P) (InT)
4) (-P) = P (Modus Ponens on lines 1 and 3)
o P (Modus Ponens on lines 2 and 4)

We see here that formal proofs even of quite simple statements can be long and hard to read; this is why we
use a different system for human-readable proofs.

2We will formally discuss what this means in Section 1.4

CS 70, Summer 2019, Bonus Note 1 2



1.3 Inconsistency

We now consider a different proof, which might seem strange at first. In particular, letting P and Q denote
some propositions, we will prove Q from I" := {P,—P}.

Proof:

(1) P = [(-P) = Q] (Axiom 3, with @; = P and @ = Q)
) pP (InT)
(3) —P (InT’)
4 (-P) = 0 (Modus Ponens on lines 1 and 2)
6 Q (Modus Ponens on lines 3 and 4)

This proof should seem strange to you—after all, we were able to conclude that Q was true even though I
didn’t say anything about it. Effectively, we knew nothing about Q, and yet somehow were able to conclude
it was true! However, this is not a bug in our proof system; rather, it is our system’s equivalent of the
Principle of Explosion, which says that if you start with a false assumption, you can prove anything. Here,
I' included both P and —P, meaning we were effectively assuming that those were both true—and yet for any
proposition P, one of them must be false!

This argument can be made more general than just directly assuming something and its negation. The
generalization is to inconsistent I's, as defined below.

Definition B1.2. Let I' be a set of formulae. We say T is inconsitent if there exists a formula ¢ such that T
proves both ¢ and —@.

Theorem B1.1. Let I be a set of formulae. If T is inconsistent, I can prove any formula.

Proof. Since I' is inconsistent, we know there is some formula ¢ such that I" proves both ¢ and —¢. Thus,
from I there exists some proof (Y1, ..., W, = @) and a proof (¢, ..., d, = —¢). We now can give a proof of
any formula v from I'. The first # lines are the proof of ¢; the next m are the proof of —¢. We then can
make the statement that ¢ = [(—¢) == V], as this is an instance of Axiom 3. Applying Modus Ponens
to this and the nth line (which is @), we get (m¢) = v. We can then apply Modus Ponens to this and the
(n+ m)th line (which is =) to get v, concluding our proof. O]

In fact, it turns out that being inconsistent is equivalent to being able to prove any formula—if I" is consistent,
there exists a formula it cannot prove. However, the proof of this fact is beyond our scope.

1.4 Satisfaction

Now that we’ve defined our proof system and seen some of how it works, we need to ask an important
question: how do we determine if anything we’ve done makes any sort of sense. Put more formally, we need
to have some definition of when a statement is true with respect to our givens (I') so that we can make sure
we’re not proving false results.

The way we define this is similar to how we defined logical equivalence back in lecture 1: we think of
propositional formulae as functions where the inputs are the truth values of the individual propositions and
the output is the truth value of the formula. In this mindset, we give the following definition:

CS 70, Summer 2019, Bonus Note 1 3



Definition B1.3. Let I" be a set of formulae and ¢ a formula. We say 1 satisfies ¢ (denoted I' E @) if every
input that causes all formulae in I to be true also causes @ to be true.

For example, let’s think back to the first proof we did, where I" was {—(—P)} and ¢ was P. In this case, the
only inputs which cause all formulae in I" (in this case just a single formula) to be true are those where P is
set to true, meaning —P is false and hence —(—P) is true. Thus, we have that this I" satisfies ¢ = P.

Another way of thinking about this is to say that I" satisfies ¢ precisely when knowing that all the formulae
in I" are true gives us enough information to know that ¢ is also true. Thus, we would ideally like to have
that I" satisfies ¢ if and only if we can prove ¢ fromI".

Theorem B1.2. Let I be a set of formulae and @ be a formula. If we can prove ¢ from I, T satisfies .

Proof. Since we can prove ¢ from I', we know that there exists a proof (@1, ¢, ..., ¢, = ¢@). We will prove
by strong induction that I" satisfies ¢; for all i from 1 to n.

Base Case (i = 1): Since there are no previous formulae to apply Modus Ponens to, we know that ¢; is
either an axiom or is in I'. If ¢; is an axiom, it evaluates to true on any input (check this!), and so certainly
evaluates to true on any input that makes everything in I" true. If instead ¢y is in I', any input that makes
everything in I" true must in particular make ¢ true.

Inductive Step: Suppose I satisfies ¢; for all i < k. If ¢ is an axiom or is in I', we have that I" satisfies
it by the same logic as the base case. Thus, we are only left to consider the case where we got to @1 by
Modus Ponens. In this case, there must be some indices j and £ less than K+ 1 such that @; is ¢, = @.
Consider any input which makes everything in I" true. Since I" satisfies @; and ¢, we know that ¢, and
@y = @y are both true—but this is only possible if @ is true! Thus, I' must also satisfy @, . O

As it turns out, the other direction is also true: if I satisfies ¢, we can prove ¢ from I".> However, the proof
of this would take many lectures to build up to*, so we will not prove it here.

Appendix

For those interested, we here present a proof of axiom 1 using only the other axioms. Where relevant, we
denote the formula in step i as (i)

D o = [(~¢1) = o (Axiom 3, with @ = @1)
2) [(m¢1) = @] = ¢ (Axiom 4)
3 2) = ¢ = (2)] (Axiom 2, with @1 = (2) and @2 = ¢1)
@ o = (2) (Modus Ponens on lines 2 and 3)

S [0 = @) = |(o0 = [-0) = a1]) = (o = 1)
(Axiom 7, with @, = [(—¢@1) = @] and @3 = ¢y)

(6) ((pl = [(-p)) = (pl]) = (¢ = ¢1) (Modus Ponens on lines 4 and 5)

7 o = ¢ (Modus Ponens on lines I and 6)

3This is the notion of completeness we hinted at in Section 1.1.
“4Indeed, this note is loosely based off the first few lectures of Math 125A.

CS 70, Summer 2019, Bonus Note 1 4



