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This note is adapted from Chapter 6 of “Elements of Set Theory” by Herbert Enderton.

1 Cantor-Schroder-Bernstein Theorem
In note 10, we stated and used the following theorem without proof:

Theorem B3.1. Let A and B be sets. If there exist one-to-one functions f : A→ B and g : B→ A, there is a
bijection b : A→ B.

In this note, we give a formal proof of this fact.

1.1 Intuition
Before diving into the proof itself, we should get some intuition about how we are going to build the bijection
b. The statement of Theorem B3.1 gives tells us nothing about A and B other than that we have the two
functions f and g. Thus, at least intuitively, if we are to have any hope of constructing b, we will need to
somehow base it off f and g.

One way we could attempt to do this would be to start with f and somehow fix the fact that it is not onto.
While this may be possible, it seems intuitively difficult to do so — after all, if we try to map an element
x ∈ A to some element of B not hit by f , we now are no longer hitting f (x). Instead, as we will see, it is
much easier to start from a function which is onto but not one-to-one.

To this end, we start by considering g. Let Rg be the set of all elements mapped to by g; that is, Rg =
{g(x)|x ∈ B}. If we interpret g as a function from B to Rg (instead of to A), it will certainly then be onto —
and changing the range won’t affect the fact that it is onto. Thus, g as a function from B to Rg is a bijection,
meaning we have an inverse g−1 : Rg→ B.

This function g−1 is almost, but not quite, what we want. We were looking for a bijection from A to B, and
instead got a bijection from some subset of A to B. In order to extend this into a function with the proper
domain, we need to decide where to map the elements in A−Rg, which we will denote A0 for brevity. Where
could we possibly map these elements? g is not helpful, as it doesn’t touch them at all. Thus, the only option
left to us is to use f . This leads us to our first attempt at a bijection:

b(x) =

{
f (x) x ∈ A0

g−1(x) x ∈ Rg

This is a good start in that it is in fact a function from A to B, and with some close inspection, one can verify
that it will be onto. However, it will not be one-to-one. There cannot be any collisions between evaluations
of f or between two evaluations of g−1 (as they are both individually one-to-one), but we will run into issues
if there is an x ∈ A0 and an x′ ∈ Rg such that f (x) = g−1(x′). In other words, we have an issue if g( f (x)) = x′

for some x ∈ A0 and x′ ∈ Rg. We have no other obvious place to map x, so the only option left to us is to
displace x′.
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This will now lead us to our second attempt at creating a bijection. We first define A1 = {g( f (x))|x ∈ A0},
which is precisely the set of elements in Rg that need to be displaced. Since we can no longer apply g−1 to
the elements in A1, again the only reasonable option we have remaining is to apply f instead. This gives us

b(x) =

{
f (x) x ∈ (A0∪A1)

g−1(x) otherwise

This is progress in the right direction, as we’ve dealt with the collisions between elements of A0 and A1.
However, we’ve now created collisions between elements of A1 (to which we’re applying f ) and those in
A2 := {g( f (x))|x ∈ A1} (to which we’re applying g−1). We thus are forced to displace everything in A2 and
apply f instead of g−1 to them. This then in turn creates its own collisions with A3 := {g( f (x))|x ∈ A2}, and
so the cycle continues.

It might seem at this point like we are stuck: every time we fix some collisions, we create others, so there’s
no way we can ever have no collisions. This would indeed be true if we stopped after some finite number of
steps. However, the key to the proof of the Cantor-Scrhöder-Bernstein Theorem is that we can do this fixing
step infinitely many times. Each fixing step repairs the collisions of the one before, so as long as there’s no
“last” step, we’ll never have any collisions. We can now formalize this intuition into a full proof.

1.2 Proof
Proof of Theorem B3.1. Suppose we are given one-to-one functions f : A → B and g : B → A. Letting
Rg = {g(x)|x ∈ B}, we can as in the previous section find a bijection g−1 : Rg→ B. Letting A0 = A−Rg and
Ai = {g( f (x))|x ∈ Ai−1} for i≥ 1, we define

b(x) =

{
f (x) x ∈ An for some n
g−1(x) otherwise

In order to complete the proof, we simply need to show that b is a bijection, which we will do by showing
that it is one-to-one and onto.

Onto: We need to show that for any y ∈ B, there is an x ∈ A such that b(x) = y. We have two cases to
consider. The first is if g(y) is in some An. We know that g(y) ∈ Rg and hence is not in A0, so we must have
that n ≥ 1. Hence, by the definition of An for n ≥ 1, we must have an x′ ∈ An−1 such that g( f (x′)) = g(y).
But g is one-to-one, so this is only possible if f (x′) = y. Since x′ ∈ An−1, we have that h(x′) = f (x′) = y, so
we have indeed found an element of A that maps to y.

The only case left to consider is if g(y) is not in An for any n. In this case, by our definition of b, we know
that b(g(y)) = g−1(g(y)) = y, so we’ve again found an element of A that maps to y. Hence, g is onto.

One-to-one: We next need to show that it is impossible to have b(x) = b(x′) for x 6= x′. Suppose for
contradiction that there are some x 6= x′ with b(x) = b(x′). It cannot be the case that b(x) = f (x) and
b(x′) = f (x′) as f is an injective function, so we can’t have f (x) = f (x′). Similarly, g−1 is a bijection from
Rg to B (and hence in particular is one-to-one), so it is impossible for b(x) = g−1(x) and b(x′) = g−1(x′).
The only possibility left, then, is that one of the two inputs falls under the first case of our definition of b,
while the other point falls under the second case.

Suppose without loss of generality that x falls under the first case and x′ falls under the second. In other
words, we have that x ∈ An for some n, but x′ is not in any Ai. In order for b(x) to equal b(x′), we must
have that f (x) = g−1(x′), meaning that g( f (x)) = x′. But then since x ∈ An, we must have that x′ ∈ An+1,
contradicting the fact that x′ is not in any of the Ais! Thus, we can conclude that b must be one-to-one.
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1.3 An Example
As a final part of this note, let’s see the kind of bijection we get from the Cantor-Schröder-Bernstein Theo-
rem. In particular, we will use as our case study A = B = N with the injections f (x) = g(x) = 2x.

We first must define our set A0. This is precisely the set of values in N which are not of the form 2k, ie,
the odd numbers. In order to get our set A1, we apply g( f (x)) = 4x to every element of A0. This gives
us the set of all numbers which are divisible by 4 but have no factors of two beyond that; that is, we get
A1 = {4o|o is odd}. Applying g( f (x)) to all elements in this set, we get A2 = {16o|o is odd}.
If we keep applying this pattern, we will notice that Ai = {22io|o is odd}.

Exercise. Prove this formula for Ai by induction.

What this tells us is that a natural number x is in some Ai if its prime factorization contains an even number
of factors of 2. In other words, x is in some Ai if there exists a natural number n and an odd number o such
that x = 22no. Thus, the Cantor-Schröder Bernstein Theorem gives us the following bijection from N to N:

b(x) =

{
2x x = 22no for some n ∈ N and odd o
x
2 otherwise

Sanity check! Verify that the above function is a bijection.
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