
Chapter 1

Beginnings

In this chapter we'll go over a few fundamental de�nitions and concepts!

1.1 (Sorta) How Math Works

Since this may be your �rst math class with a focus on proofs and rigor, I thought
it might be helpful to do a high-level overview of the �eld of mathematics.

In any mathematical system, one starts with the following:

1. Primitive notions, or unde�ned concepts. This is stu� that you and
everybody has a general agreed-upon idea of but everybody also agreed
that there was no point 1 trying to precisely de�ne because the concept
is simple enough. For example, in geometry, the primitive notions are
points, lines, and planes.

2. De�nitions, or words we say mean stu� said in terms of primitive notions
or other de�nitions. These are precise and are typically motivated by their
usefulness. For example, we de�ned "parallel" because it was useful to
have one word to describe when two lines don't intersect (same with the
word "intersect"). Yes, we could describe the same situation with only
the primitive notions, but it's too many words.

1But wait, isn't math about being precise and wouldn't we prefer to have things a bit more
clear cut? The answer is, well, we have a limited amount of words, and if we try to de�ne
everything exactly we end up running in circles. So we choose simply things that we can get
away with not de�ning�because it's super relatable or something�so we can de�ne the rest
rigorously.
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3. Axioms, or stu� that's taken for granted to be true. What is true within
one system may not be true in another. This is where our proofs start.
The most commonly cited example is Euclid's 5 axioms form the basis for
Euclidean geometry, and relaxing some of those axioms makes for entirely
di�erent �elds of geometry.

From our axioms we can derive theorems, or statements that are proved
to be assuming our axioms are true. Typically we don't go all the way down to
axioms when proving theorems; we use theorems we've already proved.

You might think at this point that math is very contrived and kind of arbi-
trary. What's the point if we derive our truths from things we just say are true
because it makes sense that way?

And you'd be absolutely correct in saying it's contrived. Unlike natural sci-
entists, mathematicians have chosen making certain statements within a system
they understand from the ground up rather than making likely statements about
a system they don't completely understand. And this certainty is powerful and
useful, because the systems are often built in a way that parallels the world we
live in.

1.2 Sets

Remember those primitive notions we were talking about in the previous sec-
tion? The idea of a set is one of them.

We can think of a set as a collection of objects. The objects can be anything,
including sets themselves! Sets are typically named by capital letters, like so:
S. Their contents are enclosed by curly brackets: {}. A set is determined by
the elements inside, and so order and repeated elements don't make sense. (The
order in which you list a set's elements isn't going to change whether or not
a certain element is in that set, and two of the same thing inside a set won't
change whether or not that thing is inside.)

For example C = {Africa, Antartica, Asia, Australia, Europe, North Amer-
ica, South America} is the set of all the continents on Earth. This set is the
same one as C1 = {Asia, Australia, Europe, Antartica, Africa, North America,
South America}.

If an element x is in set A, we can write x ∈ A. So going back to our set of
continents A we can write Asia ∈ C. This is read �Asia is in C�. If an element y
is not in set A we can write y 6∈ A, kind of similarly to a 6= b. A example using
the set of continents would be USA 6∈ A.
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Sometimes we use some type of closed shape to represent a set. Circles and
rectangles are most often used because they're pretty easy to draw.

We can write out the elements of a set inside the set, too. This is C, the set of
continents from above.

Of course we can't do this with in�nite sets but in either case we can think of
all the elements as being in the shape.

1.2.1 Cardinality, or Size

It's pretty natural to associate with a set the size, or cardinality, of it. Sets can
be in�nite or �nite or have nothing in them at all. There are 7 continents in the
world. The number of breeds recognized by the American Kennel Association
is some �nite number, but the set of integers is in�nite. There is exactly one
set without anything in it and we have a special name and a special symbol for
it�the empty set, or ∅. We'll get back to that in just a little bit.

1.2.2 Subsets and Proper Subsets

Say I have a paper bag. Then I ask you to choose anything that you'd like from
this bag; you can choose everything at all, or you can even choose nothing if
you wish. We can call the things in that I had originally in the bag set A and
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the things you chose set B. We say that B is a subset of A because it is made
entirely of elements from A. Notation-wise, this is written as B ⊆ A.

If not all the items in the bag were enticing enough for you to take them,
then we'd have B 6= A and we call B a proper subset of A. We signify this
with B ⊂ A. (Note the similarity to ≤ and <).

If none of the items suited you and you picked none of them, then B is the
empty set, or ∅. The empty set is a subset of every subset (and a proper
subset of everything other than itself).

Even if you picked everything, that's still a subset of A because every element
in B is in A.

We have a Venn diagram for this situation too! As you can see every element
inside B is also inside A, which is the de�nition of a subset.

1.2.3 Unions, Intersections, and Complements

New scenario: you are 7 again and you and your sister are collecting Yu-Gi-
Oh cards. Since you're a serious collector you only care about cards that are
di�erent from each other. So collections are represented by its set of unique
cards. 2 Because you're curious you ask your sister to compare collections
and see which cards you have in common. If your cards are represented by
A and her cards are represented by B, what you're looking at would be the
intersection�the set of unique cards the two of you have in common�of the
two sets, denoted by A ∩B .

2For the fans: It doesn't matter how many "Exodia the Forbidden One" cards you have,
it only matters that you have a complete set of all 5: the legs, arms, and main body.
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Figure 1.1: The intersection of A and B (A ∩ B) is a set that has elements in both
A and B.

If there are no cards in common, or if A ∩B = ∅, then A and B are said to be
disjoint.

Figure 1.2: A and B are disjoint because they have no elements in common.

Your sister, being younger and purer than you are, proposes to merge the
two collections to make a family collection. This would be the union of your
collections, or the set of all unique Yu-Gi-Oh cards in the combination of your
cards, denoted A ∪B. So if

A = {Kuriboh, Summoned Skull, Monster Reborn}
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and if

B = {Blue Eyes Ultimate Dragon, Dark Magician, Summoned Skull,

Monster Reborn},

then

A ∪B = {Kuriboh, Summoned Skull, Monster Reborn,

Blue Eyes Ultimate Dragon, Dark Magician}

or in Venn diagram form,

Figure 1.3: The union of sets A and B (A ∪ B) is the set that contains elements in
either A or B.

But since you're a big and mean 7-year-old you refuse and you decide to
show her all the di�erent cards you've collected that she has not. This is the
relative complement of B in A, denoted A\B, or A−B. More formally, this
is all the elements in A that are not in B. Taking A and B to be the same as
those in the previous paragraph, we have, in an anticlimactic revelation,

A\B = A−B = {Left Arm of the Forbidden One}.

A Venn diagram representation of this would be

Figure 1.4: The relative complement of B in A (A\B or A−B) is set of the elements
in A that are not in B.
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But then she makes a pouty face and points out that B\A is bigger than
A\B, since

B\A = {Right Leg of the Forbidden One, Left Leg of the Forbidden One}.

1.2.4 Wait, so what's the di�erence between ∈ and ⊆??
an Example to Tie Everything Together

Let's try to clarify with an example. Say A = {1, 2, 3, 4, 5} and B = {{1, 2, 3},
{4, 5}, 6}. So what are the elements in each of these sets? A has 6 elements�1,
2, 3, 4, and 5. B, however, has 3 elements, 2 of which are sets�the elements
are {1, 2, 3}, {4, 5}, and 6. So we can say that 1 is an element of A, or 1 is in A.
So 1 ∈ A. However we can't say that 1 is an element of B, because 1 is one of
B's 3 elements. So 1 6∈ B.

So in the same vein, we can see that {1, 2, 3} ∈ B and {1, 2, 3} 6∈ A. However
1, 2, and 3 are all elements of A so a set with those elements would be a subset
of A. So {1, 2, 3} ⊆ A. But {1, 2, 3} 6⊆ B, because B does not contain the
elements 1, 2, and 3.

Now I'm just going to list a bunch of true statements based on our de�nitions
two paragraphs ago of A and B. (I don't want to bore you with too much
explanation and I feel like I've provided su�cient wordiness, but if you don't
why any of these are true don't be afraid to ask someone.)

For reference,
A = {1, 2, 3, 4, 5}

and
B = {{1, 2, 3}, {4, 5}, 6}

• {4, 5} ∈ B

• {4, 5} ⊆ A

• {3, 4, 5} ⊆ A

• {3, 4, 5} 6∈ B

• {3, 4, 5} 6⊆ B

• {{1, 2, 3}} ⊆ B

• {{1, 2, 3}, 6} ⊆ B

• {1, 2, 3, 4, 5} ⊆ A

• A and B are disjoint because A ∩B = ∅ so
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� A−B = A

� B −A = B

1.2.5 Cartesian Products

Remember this from elementary school (and middle school, and high school)?

We usually call this the coordinate plane, but it's also called the Cartesian plane

sometimes. This is because René Descartes invented it.

So how does the Cartesian plane relate to Cartesian products? The answer
lies in how does the plane is constructed. Basically if we're given a line we can
describe any point on it by putting a real number line on it. In this scheme,
every real number represents an unique point and every point is represented
by a unique real number, i.e. the entire line can be represented by exactly the
entire set of real numbers.

Descartes's insight was that, in a plane, if we put two number lines perpen-
dicular to each other, every pair of real numbers is represents a unique point on
the plane and every point on the plane is represented by a unique pair of real
numbers, or the entire plane is represented by exactly the entire set of pairs of
real numbers.

Which brings us to the de�nition of a Cartesian product�given sets A and
B, the Cartesian product of A and B, denoted A×B is the set of all possible
pairs (a, b) where a ∈ A and b ∈ B. R is the set of all real numbers, so in the
Cartesian coordinate system, we use R× R as the set of possible coordinates.
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As a smaller example, let A = {1, 2, 3, 4} and let B = {5, 6, 7}. Then

A×B = {(1, 5), (2, 5), (3, 5), (4, 5)
(1, 6), (2, 6), (3, 6), (4, 6)

(1, 7), (2, 7), (3, 7), (4, 7)}

1.2.6 Important Sets

There are a few important sets of numbers that have special symbols.

• The set of natural numbers is denoted by N and (in this class) contains
0 and the positive integers (or whole numbers). In some circles N does
not include 0.

• The set of integers is denoted by Z and contains 0, the positive whole
numbers, and the negative whole numbers.

• The set of rational numbers is denoted by Q (for Quotient) because
every rational number q can be written as a quotient of two integers a, b
such that q = a/b (b 6= 0).

• The set of real numbers is denoted by R. Recall that real numbers
include the rationals and the irrationals.

• The set of complex numbers is denoted by C. Complex numbers are of
the form a+ bi, where a and b are real numbers and i =

√
−1 .

Notice that N ⊂ Z ⊂ Q ⊂ R ⊂ C.

1.3 Sums and Products

Summation notation is pretty challenging to get used to for everybody, so just
because this symbol:

∑
scares you now doesn't mean it'll scare you after a

healthy amount of practice! Okay it's probably not challenging to everyone,
but I confess that not too long ago whenever I saw

∑
I kinda freaked out and

tried to pretend that everything was ok even though it was not and eventually I
got so freaked out and tried to pretend so hard I just couldn't do the problem.
But I'm okay now, because I've gotten lots of practice!! If you're still in the
phase where it freaks you out, just think about what it really means and rewrite
it in a way that makes sense to you.
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Which brings us to, what does

n∑
i=0

f(i)

mean? It means for every integer (represented by i) from 0 to n (inclusive, which
means 0 ≤ i ≤ n) we evaluate f(i)�so we would have f(0), f(1), · · · , f(n) and
then we add everything up. So now we have

n∑
i=0

f(i) = f(0) + f(1) + · · ·+ f(n)

Another way to think of this that we have this format that we're going to
apply to integers in a range and then we add everything up after! The "format"
is just all the stu� after the sum sign. So now let's do an example!

Example.
∑5

i=0 i
2

Step 1: Break it down. What's f(i), or what are we doing to every integer?
We see that we're squaring the integer, or, f(i) = i2.

Step 2: Apply the format and add it all up. So we have

5∑
i=0

i2 = 02 + 12 + 22 + 32 + 42 + 52

= 55

Products work the same way except this time you're multiplying stu� to-
gether instead of adding things together! And they use this symbol

∏
. So

n∏
i=0

f(i) = f(0)× f(1)× f(2)× · · · × f(n)

1.4 Quanti�ers

In mathematics we like to say stu� like "for all <insert variable 3> ∈ <set>
there exists <something something>." A familiar one: for all a ∈ Q there exist
integers p, q such that a = p

q .

3There are a lot of conventions associated with which variables are which. For example,
a, b, c, d, (e, f) are coe�cients, and sometimes when there are too many we use a0, a1, · · · an.
We use i, j, k for indexes (think summation notation and iteration) and unit vectors, f, g, h
for functions, p for a prime number or probability, m,n for integers, α, β, γ, θ, ϕ for angles.
There are more but I can't think of any more that we commonly use in this class. (Okay, we
don't really use much of the angle stu�, but c'mon. Greek letters are fun to write.) These
aren't hard guidelines, but associating meanings to letters will help you read proofs.
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Mathematicians are lazy, so they made up symbols for basically everything
in that statement. We went over ∈ in the sets section, and we note we can write
�integers p, q� as p, q ∈ Z. So we're left with �for all�, �there exist(s)�, and �such
that�. For All is upside-down �A�: ∀, there Exist(s) is a backwards �E�: ∃, and
math people are soo lazy that we just decide to omit the �such that� (or we
abbreviate it s.t.). So our statement can be written

∀a ∈ Q ∃p, q ∈ Z a =
p

q

I'm personally not a huge fan, but for these, I �nd it easiest to translate it back
into English.


