
Lecture 10: Error Correcting Codes
WCat Can You 2o Cith A Noisy ChahDel?

1 / 18



Sema-Five?
Suppose I am trying to communicate via semaphore:

What if my recipient misses some letters?
Less silly: deal with dropped internet packets

2 / 18



Sema-Five?
Suppose I am trying to communicate via semaphore:

What if my recipient misses some letters?

Less silly: deal with dropped internet packets

2 / 18



Sema-Five?
Suppose I am trying to communicate via semaphore:

What if my recipient misses some letters?
Less silly: deal with dropped internet packets

2 / 18



Problem Statement
Formally: have message in n parts m1, ...,mn
Channel may drop up to k packets sent
How many packets needed to ensure receipt?

Naïve idea: repetition coding
▶ Repeat message “enough times”

How many reps required to guarantee receipt?
Could drop first packet every time!
Need k + 1 repetitions to be safe
For n packet message, send n(k + 1) packets
Can we do better?

3 / 18



Problem Statement
Formally: have message in n parts m1, ...,mn
Channel may drop up to k packets sent
How many packets needed to ensure receipt?
Naïve idea: repetition coding

▶ Repeat message “enough times”

How many reps required to guarantee receipt?
Could drop first packet every time!
Need k + 1 repetitions to be safe
For n packet message, send n(k + 1) packets
Can we do better?

3 / 18



Problem Statement
Formally: have message in n parts m1, ...,mn
Channel may drop up to k packets sent
How many packets needed to ensure receipt?
Naïve idea: repetition coding

▶ Repeat message “enough times”

How many reps required to guarantee receipt?

Could drop first packet every time!
Need k + 1 repetitions to be safe
For n packet message, send n(k + 1) packets
Can we do better?

3 / 18



Problem Statement
Formally: have message in n parts m1, ...,mn
Channel may drop up to k packets sent
How many packets needed to ensure receipt?
Naïve idea: repetition coding

▶ Repeat message “enough times”

How many reps required to guarantee receipt?
Could drop first packet every time!
Need k + 1 repetitions to be safe

For n packet message, send n(k + 1) packets
Can we do better?

3 / 18



Problem Statement
Formally: have message in n parts m1, ...,mn
Channel may drop up to k packets sent
How many packets needed to ensure receipt?
Naïve idea: repetition coding

▶ Repeat message “enough times”

How many reps required to guarantee receipt?
Could drop first packet every time!
Need k + 1 repetitions to be safe
For n packet message, send n(k + 1) packets

Can we do better?

3 / 18



Problem Statement
Formally: have message in n parts m1, ...,mn
Channel may drop up to k packets sent
How many packets needed to ensure receipt?
Naïve idea: repetition coding

▶ Repeat message “enough times”

How many reps required to guarantee receipt?
Could drop first packet every time!
Need k + 1 repetitions to be safe
For n packet message, send n(k + 1) packets
Can we do better?

3 / 18



A Better Encoding
Claim: Can get away with n + k packets

How? Using polynomials!
Idea: Take prime q st q > n + k, > largest message
Encode message as polynomial in GF(q)
Interpolate poly p(x) st p(i) = mi for 1 ≤ i ≤ n
Send p(1), p(2), ..., p(n + k)

4 / 18



A Better Encoding
Claim: Can get away with n + k packets
How?

Using polynomials!
Idea: Take prime q st q > n + k, > largest message
Encode message as polynomial in GF(q)
Interpolate poly p(x) st p(i) = mi for 1 ≤ i ≤ n
Send p(1), p(2), ..., p(n + k)

4 / 18



A Better Encoding
Claim: Can get away with n + k packets
How? Using polynomials!

Idea: Take prime q st q > n + k, > largest message
Encode message as polynomial in GF(q)
Interpolate poly p(x) st p(i) = mi for 1 ≤ i ≤ n
Send p(1), p(2), ..., p(n + k)

4 / 18



A Better Encoding
Claim: Can get away with n + k packets
How? Using polynomials!
Idea: Take prime q st q > n + k, > largest message
Encode message as polynomial in GF(q)

Interpolate poly p(x) st p(i) = mi for 1 ≤ i ≤ n
Send p(1), p(2), ..., p(n + k)

4 / 18



A Better Encoding
Claim: Can get away with n + k packets
How? Using polynomials!
Idea: Take prime q st q > n + k, > largest message
Encode message as polynomial in GF(q)
Interpolate poly p(x) st p(i) = mi for 1 ≤ i ≤ n
Send p(1), p(2), ..., p(n + k)

4 / 18



Recovery
Claim: With ≤ k erasures, recovery always possible

Proof:
▶ Suppose receive n points
▶ Interpolate poly p′(x) through them
▶ deg(p) = deg(p′) = n − 1
▶ p and p′ agree on n points
▶ So p = p′
▶ Thus mi = p′(i) for 1 ≤ i ≤ n

5 / 18



Recovery
Claim: With ≤ k erasures, recovery always possible
Proof:

▶ Suppose receive n points
▶ Interpolate poly p′(x) through them

▶ deg(p) = deg(p′) = n − 1
▶ p and p′ agree on n points
▶ So p = p′
▶ Thus mi = p′(i) for 1 ≤ i ≤ n

5 / 18



Recovery
Claim: With ≤ k erasures, recovery always possible
Proof:

▶ Suppose receive n points
▶ Interpolate poly p′(x) through them
▶ deg(p) = deg(p′) = n − 1
▶ p and p′ agree on n points

▶ So p = p′
▶ Thus mi = p′(i) for 1 ≤ i ≤ n

5 / 18



Recovery
Claim: With ≤ k erasures, recovery always possible
Proof:

▶ Suppose receive n points
▶ Interpolate poly p′(x) through them
▶ deg(p) = deg(p′) = n − 1
▶ p and p′ agree on n points
▶ So p = p′

▶ Thus mi = p′(i) for 1 ≤ i ≤ n

5 / 18



Recovery
Claim: With ≤ k erasures, recovery always possible
Proof:

▶ Suppose receive n points
▶ Interpolate poly p′(x) through them
▶ deg(p) = deg(p′) = n − 1
▶ p and p′ agree on n points
▶ So p = p′
▶ Thus mi = p′(i) for 1 ≤ i ≤ n

5 / 18



Enconding Example
Want to send m = (4, 0, 5), protect for 2 erasures

Interpolate polynomial modulo 7:
∆1(x) = (x − 2)(x − 3)[(1 − 2)(1 − 3)]−1

≡ 4(x2 − 5x + 6) ≡ 4x2 + x + 3 (mod 7)
Don’t need to calculate ∆2(x)!
∆3(x) = (x − 1)(x − 2)[(3 − 1)(3 − 2)]−1

≡ 4(x2 − 3x + 2) ≡ 4x2 + 2x + 1 (mod 7)
p(x) = 4∆1(x) + 5∆3(x) ≡ x2 + 3 (mod 7)
Send (p(1), p(2), p(3), p(4), p(5)) = (4, 0, 5, 5, 0)

6 / 18



Enconding Example
Want to send m = (4, 0, 5), protect for 2 erasures
Interpolate polynomial modulo 7:

∆1(x) = (x − 2)(x − 3)[(1 − 2)(1 − 3)]−1

≡ 4(x2 − 5x + 6) ≡ 4x2 + x + 3 (mod 7)
Don’t need to calculate ∆2(x)!
∆3(x) = (x − 1)(x − 2)[(3 − 1)(3 − 2)]−1

≡ 4(x2 − 3x + 2) ≡ 4x2 + 2x + 1 (mod 7)
p(x) = 4∆1(x) + 5∆3(x) ≡ x2 + 3 (mod 7)
Send (p(1), p(2), p(3), p(4), p(5)) = (4, 0, 5, 5, 0)

6 / 18



Enconding Example
Want to send m = (4, 0, 5), protect for 2 erasures
Interpolate polynomial modulo 7:
∆1(x) = (x − 2)(x − 3)[(1 − 2)(1 − 3)]−1

≡ 4(x2 − 5x + 6) ≡ 4x2 + x + 3 (mod 7)

Don’t need to calculate ∆2(x)!
∆3(x) = (x − 1)(x − 2)[(3 − 1)(3 − 2)]−1

≡ 4(x2 − 3x + 2) ≡ 4x2 + 2x + 1 (mod 7)
p(x) = 4∆1(x) + 5∆3(x) ≡ x2 + 3 (mod 7)
Send (p(1), p(2), p(3), p(4), p(5)) = (4, 0, 5, 5, 0)

6 / 18



Enconding Example
Want to send m = (4, 0, 5), protect for 2 erasures
Interpolate polynomial modulo 7:
∆1(x) = (x − 2)(x − 3)[(1 − 2)(1 − 3)]−1

≡ 4(x2 − 5x + 6) ≡ 4x2 + x + 3 (mod 7)
Don’t need to calculate ∆2(x)!

∆3(x) = (x − 1)(x − 2)[(3 − 1)(3 − 2)]−1

≡ 4(x2 − 3x + 2) ≡ 4x2 + 2x + 1 (mod 7)
p(x) = 4∆1(x) + 5∆3(x) ≡ x2 + 3 (mod 7)
Send (p(1), p(2), p(3), p(4), p(5)) = (4, 0, 5, 5, 0)

6 / 18



Enconding Example
Want to send m = (4, 0, 5), protect for 2 erasures
Interpolate polynomial modulo 7:
∆1(x) = (x − 2)(x − 3)[(1 − 2)(1 − 3)]−1

≡ 4(x2 − 5x + 6) ≡ 4x2 + x + 3 (mod 7)
Don’t need to calculate ∆2(x)!
∆3(x) = (x − 1)(x − 2)[(3 − 1)(3 − 2)]−1

≡ 4(x2 − 3x + 2) ≡ 4x2 + 2x + 1 (mod 7)

p(x) = 4∆1(x) + 5∆3(x) ≡ x2 + 3 (mod 7)
Send (p(1), p(2), p(3), p(4), p(5)) = (4, 0, 5, 5, 0)

6 / 18



Enconding Example
Want to send m = (4, 0, 5), protect for 2 erasures
Interpolate polynomial modulo 7:
∆1(x) = (x − 2)(x − 3)[(1 − 2)(1 − 3)]−1

≡ 4(x2 − 5x + 6) ≡ 4x2 + x + 3 (mod 7)
Don’t need to calculate ∆2(x)!
∆3(x) = (x − 1)(x − 2)[(3 − 1)(3 − 2)]−1

≡ 4(x2 − 3x + 2) ≡ 4x2 + 2x + 1 (mod 7)
p(x) = 4∆1(x) + 5∆3(x) ≡ x2 + 3 (mod 7)

Send (p(1), p(2), p(3), p(4), p(5)) = (4, 0, 5, 5, 0)

6 / 18



Enconding Example
Want to send m = (4, 0, 5), protect for 2 erasures
Interpolate polynomial modulo 7:
∆1(x) = (x − 2)(x − 3)[(1 − 2)(1 − 3)]−1

≡ 4(x2 − 5x + 6) ≡ 4x2 + x + 3 (mod 7)
Don’t need to calculate ∆2(x)!
∆3(x) = (x − 1)(x − 2)[(3 − 1)(3 − 2)]−1

≡ 4(x2 − 3x + 2) ≡ 4x2 + 2x + 1 (mod 7)
p(x) = 4∆1(x) + 5∆3(x) ≡ x2 + 3 (mod 7)
Send (p(1), p(2), p(3), p(4), p(5)) = (4, 0, 5, 5, 0)

6 / 18



Recovery Example
Sent: (4, 0, 5, 5, 0); Received: (−, 0, 5, 5,−)

Need to interpolate!
Don’t need ∆2(x)!
∆3(x) = (x − 2)(x − 4)[(3 − 2)(3 − 4)]−1

≡ 6(x2 − 6x + 8) ≡ 6x2 + 6x + 6
∆4(x) = (x − 2)(x − 3)[(4 − 2)(4 − 3)]−1

≡ 4(x2 − 5x + 6) ≡ 4x2 + x + 3
Interpolate p′(x) = 5∆3(x) + 5∆4(x) ≡ x2 + 3
Evaluate for message: (p′(1), p′(2), p′(3)) = (4, 0, 5)

7 / 18



Recovery Example
Sent: (4, 0, 5, 5, 0); Received: (−, 0, 5, 5,−)
Need to interpolate!

Don’t need ∆2(x)!
∆3(x) = (x − 2)(x − 4)[(3 − 2)(3 − 4)]−1

≡ 6(x2 − 6x + 8) ≡ 6x2 + 6x + 6
∆4(x) = (x − 2)(x − 3)[(4 − 2)(4 − 3)]−1

≡ 4(x2 − 5x + 6) ≡ 4x2 + x + 3
Interpolate p′(x) = 5∆3(x) + 5∆4(x) ≡ x2 + 3
Evaluate for message: (p′(1), p′(2), p′(3)) = (4, 0, 5)

7 / 18



Recovery Example
Sent: (4, 0, 5, 5, 0); Received: (−, 0, 5, 5,−)
Need to interpolate!
Don’t need ∆2(x)!

∆3(x) = (x − 2)(x − 4)[(3 − 2)(3 − 4)]−1

≡ 6(x2 − 6x + 8) ≡ 6x2 + 6x + 6
∆4(x) = (x − 2)(x − 3)[(4 − 2)(4 − 3)]−1

≡ 4(x2 − 5x + 6) ≡ 4x2 + x + 3
Interpolate p′(x) = 5∆3(x) + 5∆4(x) ≡ x2 + 3
Evaluate for message: (p′(1), p′(2), p′(3)) = (4, 0, 5)

7 / 18



Recovery Example
Sent: (4, 0, 5, 5, 0); Received: (−, 0, 5, 5,−)
Need to interpolate!
Don’t need ∆2(x)!
∆3(x) = (x − 2)(x − 4)[(3 − 2)(3 − 4)]−1

≡ 6(x2 − 6x + 8) ≡ 6x2 + 6x + 6

∆4(x) = (x − 2)(x − 3)[(4 − 2)(4 − 3)]−1

≡ 4(x2 − 5x + 6) ≡ 4x2 + x + 3
Interpolate p′(x) = 5∆3(x) + 5∆4(x) ≡ x2 + 3
Evaluate for message: (p′(1), p′(2), p′(3)) = (4, 0, 5)

7 / 18



Recovery Example
Sent: (4, 0, 5, 5, 0); Received: (−, 0, 5, 5,−)
Need to interpolate!
Don’t need ∆2(x)!
∆3(x) = (x − 2)(x − 4)[(3 − 2)(3 − 4)]−1

≡ 6(x2 − 6x + 8) ≡ 6x2 + 6x + 6
∆4(x) = (x − 2)(x − 3)[(4 − 2)(4 − 3)]−1

≡ 4(x2 − 5x + 6) ≡ 4x2 + x + 3

Interpolate p′(x) = 5∆3(x) + 5∆4(x) ≡ x2 + 3
Evaluate for message: (p′(1), p′(2), p′(3)) = (4, 0, 5)

7 / 18



Recovery Example
Sent: (4, 0, 5, 5, 0); Received: (−, 0, 5, 5,−)
Need to interpolate!
Don’t need ∆2(x)!
∆3(x) = (x − 2)(x − 4)[(3 − 2)(3 − 4)]−1

≡ 6(x2 − 6x + 8) ≡ 6x2 + 6x + 6
∆4(x) = (x − 2)(x − 3)[(4 − 2)(4 − 3)]−1

≡ 4(x2 − 5x + 6) ≡ 4x2 + x + 3
Interpolate p′(x) = 5∆3(x) + 5∆4(x) ≡ x2 + 3

Evaluate for message: (p′(1), p′(2), p′(3)) = (4, 0, 5)

7 / 18



Recovery Example
Sent: (4, 0, 5, 5, 0); Received: (−, 0, 5, 5,−)
Need to interpolate!
Don’t need ∆2(x)!
∆3(x) = (x − 2)(x − 4)[(3 − 2)(3 − 4)]−1

≡ 6(x2 − 6x + 8) ≡ 6x2 + 6x + 6
∆4(x) = (x − 2)(x − 3)[(4 − 2)(4 − 3)]−1

≡ 4(x2 − 5x + 6) ≡ 4x2 + x + 3
Interpolate p′(x) = 5∆3(x) + 5∆4(x) ≡ x2 + 3
Evaluate for message: (p′(1), p′(2), p′(3)) = (4, 0, 5)

7 / 18



Optimality
Claim: Can’t guarantee success w/< n + k packets

Proof:
▶ May send one of two messages:

▶ (m1,m2, ...,mn−1,mn) or
▶ (m1,m2, ...,mn−1,m′

n)

▶ Channel drops nth packet and all extras
▶ Which message was sent?
▶ Impossible to know!

8 / 18



Optimality
Claim: Can’t guarantee success w/< n + k packets
Proof:

▶ May send one of two messages:
▶ (m1,m2, ...,mn−1,mn) or
▶ (m1,m2, ...,mn−1,m′

n)

▶ Channel drops nth packet and all extras
▶ Which message was sent?
▶ Impossible to know!

8 / 18



Optimality
Claim: Can’t guarantee success w/< n + k packets
Proof:

▶ May send one of two messages:
▶ (m1,m2, ...,mn−1,mn) or
▶ (m1,m2, ...,mn−1,m′

n)

▶ Channel drops nth packet and all extras

▶ Which message was sent?
▶ Impossible to know!

8 / 18



Optimality
Claim: Can’t guarantee success w/< n + k packets
Proof:

▶ May send one of two messages:
▶ (m1,m2, ...,mn−1,mn) or
▶ (m1,m2, ...,mn−1,m′

n)

▶ Channel drops nth packet and all extras
▶ Which message was sent?

▶ Impossible to know!

8 / 18



Optimality
Claim: Can’t guarantee success w/< n + k packets
Proof:

▶ May send one of two messages:
▶ (m1,m2, ...,mn−1,mn) or
▶ (m1,m2, ...,mn−1,m′

n)

▶ Channel drops nth packet and all extras
▶ Which message was sent?
▶ Impossible to know!

8 / 18



C0rrupt1on Err0rs
More difficult: what if packets are corrupted?

Don’t know which packets are wrong!
Claim: Previous encoding not good enough
Proof:

▶ Again, two possible original messages:
▶ (m1, ...,mn−1,mn) or
▶ (m1, ...,mn−1,m′

n)

▶ First n rec’d match 1st, but next k match 2nd
▶ Which message was sent?
▶ Impossible to know!

Note: works for any padding by k packets

9 / 18



C0rrupt1on Err0rs
More difficult: what if packets are corrupted?
Don’t know which packets are wrong!

Claim: Previous encoding not good enough
Proof:

▶ Again, two possible original messages:
▶ (m1, ...,mn−1,mn) or
▶ (m1, ...,mn−1,m′

n)

▶ First n rec’d match 1st, but next k match 2nd
▶ Which message was sent?
▶ Impossible to know!

Note: works for any padding by k packets

9 / 18



C0rrupt1on Err0rs
More difficult: what if packets are corrupted?
Don’t know which packets are wrong!
Claim: Previous encoding not good enough

Proof:
▶ Again, two possible original messages:

▶ (m1, ...,mn−1,mn) or
▶ (m1, ...,mn−1,m′

n)

▶ First n rec’d match 1st, but next k match 2nd
▶ Which message was sent?
▶ Impossible to know!

Note: works for any padding by k packets

9 / 18



C0rrupt1on Err0rs
More difficult: what if packets are corrupted?
Don’t know which packets are wrong!
Claim: Previous encoding not good enough
Proof:

▶ Again, two possible original messages:
▶ (m1, ...,mn−1,mn) or
▶ (m1, ...,mn−1,m′

n)

▶ First n rec’d match 1st, but next k match 2nd
▶ Which message was sent?
▶ Impossible to know!

Note: works for any padding by k packets

9 / 18



C0rrupt1on Err0rs
More difficult: what if packets are corrupted?
Don’t know which packets are wrong!
Claim: Previous encoding not good enough
Proof:

▶ Again, two possible original messages:
▶ (m1, ...,mn−1,mn) or
▶ (m1, ...,mn−1,m′

n)

▶ First n rec’d match 1st, but next k match 2nd

▶ Which message was sent?
▶ Impossible to know!

Note: works for any padding by k packets

9 / 18



C0rrupt1on Err0rs
More difficult: what if packets are corrupted?
Don’t know which packets are wrong!
Claim: Previous encoding not good enough
Proof:

▶ Again, two possible original messages:
▶ (m1, ...,mn−1,mn) or
▶ (m1, ...,mn−1,m′

n)

▶ First n rec’d match 1st, but next k match 2nd
▶ Which message was sent?

▶ Impossible to know!
Note: works for any padding by k packets

9 / 18



C0rrupt1on Err0rs
More difficult: what if packets are corrupted?
Don’t know which packets are wrong!
Claim: Previous encoding not good enough
Proof:

▶ Again, two possible original messages:
▶ (m1, ...,mn−1,mn) or
▶ (m1, ...,mn−1,m′

n)

▶ First n rec’d match 1st, but next k match 2nd
▶ Which message was sent?
▶ Impossible to know!

Note: works for any padding by k packets

9 / 18



C0rrupt1on Err0rs
More difficult: what if packets are corrupted?
Don’t know which packets are wrong!
Claim: Previous encoding not good enough
Proof:

▶ Again, two possible original messages:
▶ (m1, ...,mn−1,mn) or
▶ (m1, ...,mn−1,m′

n)

▶ First n rec’d match 1st, but next k match 2nd
▶ Which message was sent?
▶ Impossible to know!

Note: works for any padding by k packets
9 / 18



NEED MOAR PACKETS
Theorem: For k corruptions, need ≥ n+ 2k packets

Suppose only send 2k − 1 extra packets
Consider two possible messages:

(m1,m2, ...,mn−1,mn, e1, ..., ek−1, ek, ..., e2k−1)

(m1,m2, ...,mn−1,m′
n, e′1, ..., e′k−1, e′k, ..., e′2k−1)

(m1,m2, ...,mn−1,mn, e1, ..., ek−1, e′k, ..., e′2k−1)

Don’t know which message originally sent!

10 / 18



NEED MOAR PACKETS
Theorem: For k corruptions, need ≥ n+ 2k packets
Suppose only send 2k − 1 extra packets

Consider two possible messages:
(m1,m2, ...,mn−1,mn, e1, ..., ek−1, ek, ..., e2k−1)

(m1,m2, ...,mn−1,m′
n, e′1, ..., e′k−1, e′k, ..., e′2k−1)

(m1,m2, ...,mn−1,mn, e1, ..., ek−1, e′k, ..., e′2k−1)

Don’t know which message originally sent!

10 / 18



NEED MOAR PACKETS
Theorem: For k corruptions, need ≥ n+ 2k packets
Suppose only send 2k − 1 extra packets
Consider two possible messages:

(m1,m2, ...,mn−1,mn, e1, ..., ek−1, ek, ..., e2k−1)

(m1,m2, ...,mn−1,m′
n, e′1, ..., e′k−1, e′k, ..., e′2k−1)

(m1,m2, ...,mn−1,mn, e1, ..., ek−1, e′k, ..., e′2k−1)

Don’t know which message originally sent!

10 / 18



NEED MOAR PACKETS
Theorem: For k corruptions, need ≥ n+ 2k packets
Suppose only send 2k − 1 extra packets
Consider two possible messages:

(m1,m2, ...,mn−1,mn, e1, ..., ek−1, ek, ..., e2k−1)

(m1,m2, ...,mn−1,m′
n, e′1, ..., e′k−1, e′k, ..., e′2k−1)

(m1,m2, ...,mn−1,mn, e1, ..., ek−1, e′k, ..., e′2k−1)

Don’t know which message originally sent!

10 / 18



NEED MOAR PACKETS
Theorem: For k corruptions, need ≥ n+ 2k packets
Suppose only send 2k − 1 extra packets
Consider two possible messages:

(m1,m2, ...,mn−1,mn, e1, ..., ek−1, ek, ..., e2k−1)

(m1,m2, ...,mn−1,m′
n, e′1, ..., e′k−1, e′k, ..., e′2k−1)

(m1,m2, ...,mn−1,mn, e1, ..., ek−1, e′k, ..., e′2k−1)

Don’t know which message originally sent!

10 / 18



NEED MOAR PACKETS
Theorem: For k corruptions, need ≥ n+ 2k packets
Suppose only send 2k − 1 extra packets
Consider two possible messages:

(m1,m2, ...,mn−1,mn, e1, ..., ek−1, ek, ..., e2k−1)

(m1,m2, ...,mn−1,m′
n, e′1, ..., e′k−1, e′k, ..., e′2k−1)

(m1,m2, ...,mn−1,mn, e1, ..., ek−1, e′k, ..., e′2k−1)

Don’t know which message originally sent!

10 / 18



NEED MOAR PACKETS
Theorem: For k corruptions, need ≥ n+ 2k packets
Suppose only send 2k − 1 extra packets
Consider two possible messages:

(m1,m2, ...,mn−1,mn, e1, ..., ek−1, ek, ..., e2k−1)

(m1,m2, ...,mn−1,m′
n, e′1, ..., e′k−1, e′k, ..., e′2k−1)

(m1,m2, ...,mn−1,mn, e1, ..., ek−1, e′k, ..., e′2k−1)

Don’t know which message originally sent!

10 / 18



Relaaaaax
Take a 4 minute break!

Today’s Discussion Question:
What’s your strangest family tradition?

11 / 18



Relaaaaax
Take a 4 minute break!
Today’s Discussion Question:
What’s your strangest family tradition?

11 / 18



Corruption Recovery
Theorem: If use previous encoding with 2k extra
packets, can recover from k corruptions.

How? Find deg n − 1 poly through n + k points
Claim: Such a poly exists

▶ Original poly through n + k uncorrupted points

Claim: Only one such poly
▶ For any n + k points, at least n uncorrupted
▶ Those n define the original polynomial

12 / 18



Corruption Recovery
Theorem: If use previous encoding with 2k extra
packets, can recover from k corruptions.
How?

Find deg n − 1 poly through n + k points
Claim: Such a poly exists

▶ Original poly through n + k uncorrupted points

Claim: Only one such poly
▶ For any n + k points, at least n uncorrupted
▶ Those n define the original polynomial

12 / 18



Corruption Recovery
Theorem: If use previous encoding with 2k extra
packets, can recover from k corruptions.
How? Find deg n − 1 poly through n + k points

Claim: Such a poly exists
▶ Original poly through n + k uncorrupted points

Claim: Only one such poly
▶ For any n + k points, at least n uncorrupted
▶ Those n define the original polynomial

12 / 18



Corruption Recovery
Theorem: If use previous encoding with 2k extra
packets, can recover from k corruptions.
How? Find deg n − 1 poly through n + k points
Claim: Such a poly exists

▶ Original poly through n + k uncorrupted points

Claim: Only one such poly
▶ For any n + k points, at least n uncorrupted
▶ Those n define the original polynomial

12 / 18



Corruption Recovery
Theorem: If use previous encoding with 2k extra
packets, can recover from k corruptions.
How? Find deg n − 1 poly through n + k points
Claim: Such a poly exists

▶ Original poly through n + k uncorrupted points

Claim: Only one such poly
▶ For any n + k points, at least n uncorrupted
▶ Those n define the original polynomial

12 / 18



Corruption Recovery
Theorem: If use previous encoding with 2k extra
packets, can recover from k corruptions.
How? Find deg n − 1 poly through n + k points
Claim: Such a poly exists

▶ Original poly through n + k uncorrupted points

Claim: Only one such poly

▶ For any n + k points, at least n uncorrupted
▶ Those n define the original polynomial

12 / 18



Corruption Recovery
Theorem: If use previous encoding with 2k extra
packets, can recover from k corruptions.
How? Find deg n − 1 poly through n + k points
Claim: Such a poly exists

▶ Original poly through n + k uncorrupted points

Claim: Only one such poly
▶ For any n + k points, at least n uncorrupted
▶ Those n define the original polynomial

12 / 18



Efficiency?
How long does it take to recover?

Naïvely, need to try all possible sets of k corruptions(n+2k
k

)
≈ (n+2k

k )k possibilities — much too slow
State-of-the-art for over 25 years! (1960 - 1986)

Elwyn Berlekamp Lloyd Welch

13 / 18



Efficiency?
How long does it take to recover?
Naïvely, need to try all possible sets of k corruptions

(n+2k
k

)
≈ (n+2k

k )k possibilities — much too slow
State-of-the-art for over 25 years! (1960 - 1986)

Elwyn Berlekamp Lloyd Welch

13 / 18



Efficiency?
How long does it take to recover?
Naïvely, need to try all possible sets of k corruptions(n+2k

k
)
≈ (n+2k

k )k possibilities — much too slow

State-of-the-art for over 25 years! (1960 - 1986)

Elwyn Berlekamp Lloyd Welch

13 / 18



Efficiency?
How long does it take to recover?
Naïvely, need to try all possible sets of k corruptions(n+2k

k
)
≈ (n+2k

k )k possibilities — much too slow
State-of-the-art for over 25 years! (1960 - 1986)

Elwyn Berlekamp Lloyd Welch

13 / 18



Efficiency?
How long does it take to recover?
Naïvely, need to try all possible sets of k corruptions(n+2k

k
)
≈ (n+2k

k )k possibilities — much too slow
State-of-the-art for over 25 years! (1960 - 1986)

Elwyn Berlekamp Lloyd Welch

13 / 18



Efficiency?
How long does it take to recover?
Naïvely, need to try all possible sets of k corruptions(n+2k

k
)
≈ (n+2k

k )k possibilities — much too slow
State-of-the-art for over 25 years! (1960 - 1986)

Elwyn Berlekamp Lloyd Welch
13 / 18



Berlekamp-Welch Recovery
Main idea: have (unknown) error-location poly
e(x) = (x − e1)(x − e2)...(x − ek)

If can find this poly, can fix corruptions!
Define (unknown) q(x) = p(x)e(x) to help solve
Claim: q(i) = rie(i) for all i

▶ If i error, both sides zero
▶ Otherwise ri = p(i), so true by definition

Gives n + 2k equations known to be true!
Unknowns are coefficients for q(x) and e(x)

14 / 18



Berlekamp-Welch Recovery
Main idea: have (unknown) error-location poly
e(x) = (x − e1)(x − e2)...(x − ek)

If can find this poly, can fix corruptions!

Define (unknown) q(x) = p(x)e(x) to help solve
Claim: q(i) = rie(i) for all i

▶ If i error, both sides zero
▶ Otherwise ri = p(i), so true by definition

Gives n + 2k equations known to be true!
Unknowns are coefficients for q(x) and e(x)

14 / 18



Berlekamp-Welch Recovery
Main idea: have (unknown) error-location poly
e(x) = (x − e1)(x − e2)...(x − ek)

If can find this poly, can fix corruptions!
Define (unknown) q(x) = p(x)e(x) to help solve

Claim: q(i) = rie(i) for all i
▶ If i error, both sides zero
▶ Otherwise ri = p(i), so true by definition

Gives n + 2k equations known to be true!
Unknowns are coefficients for q(x) and e(x)

14 / 18



Berlekamp-Welch Recovery
Main idea: have (unknown) error-location poly
e(x) = (x − e1)(x − e2)...(x − ek)

If can find this poly, can fix corruptions!
Define (unknown) q(x) = p(x)e(x) to help solve
Claim: q(i) = rie(i) for all i

▶ If i error, both sides zero
▶ Otherwise ri = p(i), so true by definition

Gives n + 2k equations known to be true!
Unknowns are coefficients for q(x) and e(x)

14 / 18



Berlekamp-Welch Recovery
Main idea: have (unknown) error-location poly
e(x) = (x − e1)(x − e2)...(x − ek)

If can find this poly, can fix corruptions!
Define (unknown) q(x) = p(x)e(x) to help solve
Claim: q(i) = rie(i) for all i

▶ If i error, both sides zero
▶ Otherwise ri = p(i), so true by definition

Gives n + 2k equations known to be true!
Unknowns are coefficients for q(x) and e(x)

14 / 18



Berlekamp-Welch Recovery
Main idea: have (unknown) error-location poly
e(x) = (x − e1)(x − e2)...(x − ek)

If can find this poly, can fix corruptions!
Define (unknown) q(x) = p(x)e(x) to help solve
Claim: q(i) = rie(i) for all i

▶ If i error, both sides zero
▶ Otherwise ri = p(i), so true by definition

Gives n + 2k equations known to be true!
Unknowns are coefficients for q(x) and e(x)

14 / 18



Berlekamp-Welch: A Closer Look
What does q(x) look like?

deg(p) = n − 1, deg(e) = k, so deg(q) = n + k − 1
q(x) = an+k−1xn+k−1 + ...+ a1x + a0

What does e(x) look like?
e(x) = (x − e1)(x − e2)...(x − ek), so degree k
e(x) = bkxk + ...+ b1x + b0

But wait! bk = 1 for any e1, ..., ek!
So e(x) = xk + bk−1xk−1 + ...+ b1x + b0

Have n + k unknowns from q, k from e
Matches n + 2k linear eqns of the form q(i) = rie(i)

Linear Algebra: can find q, e, so have p(x) = q(x)
e(x)

15 / 18



Berlekamp-Welch: A Closer Look
What does q(x) look like?
deg(p) = n − 1, deg(e) = k, so deg(q) = n + k − 1

q(x) = an+k−1xn+k−1 + ...+ a1x + a0

What does e(x) look like?
e(x) = (x − e1)(x − e2)...(x − ek), so degree k
e(x) = bkxk + ...+ b1x + b0

But wait! bk = 1 for any e1, ..., ek!
So e(x) = xk + bk−1xk−1 + ...+ b1x + b0

Have n + k unknowns from q, k from e
Matches n + 2k linear eqns of the form q(i) = rie(i)

Linear Algebra: can find q, e, so have p(x) = q(x)
e(x)

15 / 18



Berlekamp-Welch: A Closer Look
What does q(x) look like?
deg(p) = n − 1, deg(e) = k, so deg(q) = n + k − 1
q(x) = an+k−1xn+k−1 + ...+ a1x + a0

What does e(x) look like?
e(x) = (x − e1)(x − e2)...(x − ek), so degree k
e(x) = bkxk + ...+ b1x + b0

But wait! bk = 1 for any e1, ..., ek!
So e(x) = xk + bk−1xk−1 + ...+ b1x + b0

Have n + k unknowns from q, k from e
Matches n + 2k linear eqns of the form q(i) = rie(i)

Linear Algebra: can find q, e, so have p(x) = q(x)
e(x)

15 / 18



Berlekamp-Welch: A Closer Look
What does q(x) look like?
deg(p) = n − 1, deg(e) = k, so deg(q) = n + k − 1
q(x) = an+k−1xn+k−1 + ...+ a1x + a0

What does e(x) look like?

e(x) = (x − e1)(x − e2)...(x − ek), so degree k
e(x) = bkxk + ...+ b1x + b0

But wait! bk = 1 for any e1, ..., ek!
So e(x) = xk + bk−1xk−1 + ...+ b1x + b0

Have n + k unknowns from q, k from e
Matches n + 2k linear eqns of the form q(i) = rie(i)

Linear Algebra: can find q, e, so have p(x) = q(x)
e(x)

15 / 18



Berlekamp-Welch: A Closer Look
What does q(x) look like?
deg(p) = n − 1, deg(e) = k, so deg(q) = n + k − 1
q(x) = an+k−1xn+k−1 + ...+ a1x + a0

What does e(x) look like?
e(x) = (x − e1)(x − e2)...(x − ek), so degree k

e(x) = bkxk + ...+ b1x + b0

But wait! bk = 1 for any e1, ..., ek!
So e(x) = xk + bk−1xk−1 + ...+ b1x + b0

Have n + k unknowns from q, k from e
Matches n + 2k linear eqns of the form q(i) = rie(i)

Linear Algebra: can find q, e, so have p(x) = q(x)
e(x)

15 / 18



Berlekamp-Welch: A Closer Look
What does q(x) look like?
deg(p) = n − 1, deg(e) = k, so deg(q) = n + k − 1
q(x) = an+k−1xn+k−1 + ...+ a1x + a0

What does e(x) look like?
e(x) = (x − e1)(x − e2)...(x − ek), so degree k
e(x) = bkxk + ...+ b1x + b0

But wait! bk = 1 for any e1, ..., ek!
So e(x) = xk + bk−1xk−1 + ...+ b1x + b0

Have n + k unknowns from q, k from e
Matches n + 2k linear eqns of the form q(i) = rie(i)

Linear Algebra: can find q, e, so have p(x) = q(x)
e(x)

15 / 18



Berlekamp-Welch: A Closer Look
What does q(x) look like?
deg(p) = n − 1, deg(e) = k, so deg(q) = n + k − 1
q(x) = an+k−1xn+k−1 + ...+ a1x + a0

What does e(x) look like?
e(x) = (x − e1)(x − e2)...(x − ek), so degree k
e(x) = bkxk + ...+ b1x + b0

But wait! bk = 1 for any e1, ..., ek!
So e(x) = xk + bk−1xk−1 + ...+ b1x + b0

Have n + k unknowns from q, k from e
Matches n + 2k linear eqns of the form q(i) = rie(i)

Linear Algebra: can find q, e, so have p(x) = q(x)
e(x)

15 / 18



Berlekamp-Welch: A Closer Look
What does q(x) look like?
deg(p) = n − 1, deg(e) = k, so deg(q) = n + k − 1
q(x) = an+k−1xn+k−1 + ...+ a1x + a0

What does e(x) look like?
e(x) = (x − e1)(x − e2)...(x − ek), so degree k
e(x) = bkxk + ...+ b1x + b0

But wait! bk = 1 for any e1, ..., ek!
So e(x) = xk + bk−1xk−1 + ...+ b1x + b0

Have n + k unknowns from q, k from e
Matches n + 2k linear eqns of the form q(i) = rie(i)

Linear Algebra: can find q, e, so have p(x) = q(x)
e(x)

15 / 18



Berlekamp-Welch: A Closer Look
What does q(x) look like?
deg(p) = n − 1, deg(e) = k, so deg(q) = n + k − 1
q(x) = an+k−1xn+k−1 + ...+ a1x + a0

What does e(x) look like?
e(x) = (x − e1)(x − e2)...(x − ek), so degree k
e(x) = bkxk + ...+ b1x + b0

But wait! bk = 1 for any e1, ..., ek!
So e(x) = xk + bk−1xk−1 + ...+ b1x + b0

Have n + k unknowns from q, k from e
Matches n + 2k linear eqns of the form q(i) = rie(i)

Linear Algebra: can find q, e, so have p(x) = q(x)
e(x)

15 / 18



Berlekamp-Welch: Example
Want to send length 2 message, have 1 corruption
Receive messages (1, 3), (2, 1), (3, 4), (4, 0) mod 7

q(x) = a2x2 + a1x + a0, e(x) = x + b0

Eq 1: q(1) = r1e(1), so a2 + a1 + a0 = 3(1 + b0)

Eq 2: q(2) = r2e(2), so 4a2 + 2a1 + a0 = 1(2 + b0)

Eq 3: q(3) = r3e(3), so 9a2 + 3a1 + a0 = 4(3 + b0)

Eq 4: q(4) = r4e(4), so 16a2 + 4a1 + a0 = 0(4 + b0)

Note: all eqns modulo 7, so can shrink some nums

16 / 18



Berlekamp-Welch: Example
Want to send length 2 message, have 1 corruption
Receive messages (1, 3), (2, 1), (3, 4), (4, 0) mod 7
q(x) = a2x2 + a1x + a0, e(x) = x + b0

Eq 1: q(1) = r1e(1), so a2 + a1 + a0 = 3(1 + b0)

Eq 2: q(2) = r2e(2), so 4a2 + 2a1 + a0 = 1(2 + b0)

Eq 3: q(3) = r3e(3), so 9a2 + 3a1 + a0 = 4(3 + b0)

Eq 4: q(4) = r4e(4), so 16a2 + 4a1 + a0 = 0(4 + b0)

Note: all eqns modulo 7, so can shrink some nums

16 / 18



Berlekamp-Welch: Example
Want to send length 2 message, have 1 corruption
Receive messages (1, 3), (2, 1), (3, 4), (4, 0) mod 7
q(x) = a2x2 + a1x + a0, e(x) = x + b0

Eq 1: q(1) = r1e(1), so a2 + a1 + a0 = 3(1 + b0)

Eq 2: q(2) = r2e(2), so 4a2 + 2a1 + a0 = 1(2 + b0)

Eq 3: q(3) = r3e(3), so 9a2 + 3a1 + a0 = 4(3 + b0)

Eq 4: q(4) = r4e(4), so 16a2 + 4a1 + a0 = 0(4 + b0)

Note: all eqns modulo 7, so can shrink some nums

16 / 18



Berlekamp-Welch: Example
Want to send length 2 message, have 1 corruption
Receive messages (1, 3), (2, 1), (3, 4), (4, 0) mod 7
q(x) = a2x2 + a1x + a0, e(x) = x + b0

Eq 1: q(1) = r1e(1), so a2 + a1 + a0 = 3(1 + b0)

Eq 2: q(2) = r2e(2), so 4a2 + 2a1 + a0 = 1(2 + b0)

Eq 3: q(3) = r3e(3), so 9a2 + 3a1 + a0 = 4(3 + b0)

Eq 4: q(4) = r4e(4), so 16a2 + 4a1 + a0 = 0(4 + b0)

Note: all eqns modulo 7, so can shrink some nums

16 / 18



Berlekamp-Welch: Example
Want to send length 2 message, have 1 corruption
Receive messages (1, 3), (2, 1), (3, 4), (4, 0) mod 7
q(x) = a2x2 + a1x + a0, e(x) = x + b0

Eq 1: q(1) = r1e(1), so a2 + a1 + a0 = 3(1 + b0)

Eq 2: q(2) = r2e(2), so 4a2 + 2a1 + a0 = 1(2 + b0)

Eq 3: q(3) = r3e(3), so 9a2 + 3a1 + a0 = 4(3 + b0)

Eq 4: q(4) = r4e(4), so 16a2 + 4a1 + a0 = 0(4 + b0)

Note: all eqns modulo 7, so can shrink some nums

16 / 18



Berlekamp-Welch: Example
Want to send length 2 message, have 1 corruption
Receive messages (1, 3), (2, 1), (3, 4), (4, 0) mod 7
q(x) = a2x2 + a1x + a0, e(x) = x + b0

Eq 1: q(1) = r1e(1), so a2 + a1 + a0 = 3(1 + b0)

Eq 2: q(2) = r2e(2), so 4a2 + 2a1 + a0 = 1(2 + b0)

Eq 3: q(3) = r3e(3), so 9a2 + 3a1 + a0 = 4(3 + b0)

Eq 4: q(4) = r4e(4), so 16a2 + 4a1 + a0 = 0(4 + b0)

Note: all eqns modulo 7, so can shrink some nums

16 / 18



Berlekamp-Welch: Example
Want to send length 2 message, have 1 corruption
Receive messages (1, 3), (2, 1), (3, 4), (4, 0) mod 7
q(x) = a2x2 + a1x + a0, e(x) = x + b0

Eq 1: q(1) = r1e(1), so a2 + a1 + a0 = 3(1 + b0)

Eq 2: q(2) = r2e(2), so 4a2 + 2a1 + a0 = 1(2 + b0)

Eq 3: q(3) = r3e(3), so 9a2 + 3a1 + a0 = 4(3 + b0)

Eq 4: q(4) = r4e(4), so 16a2 + 4a1 + a0 = 0(4 + b0)

Note: all eqns modulo 7, so can shrink some nums

16 / 18



(Berlekamp-Welch: Example): Continued
Simplify equations mod 7, move all variables to left:
a2 + a1 + a0 − 3b0 = 3
4a2 + 2a1 + a0 − b0 = 2
2a2 + 3a1 + a0 − 4b0 = 5
2a2 + 4a1 + a0 = 0

Can use Gaussian Elimination (mod 7) to solve
Here, a2 = 3, a1 = 6, a0 = 5, b0 = 6
So q(x) = 3x2 + 6x + 5, e(x) = x + 6
Do poly long division mod 7 to get p(x) = 3x + 2
Original messages: p(1) = 5, p(2) = 1

17 / 18



(Berlekamp-Welch: Example): Continued
Simplify equations mod 7, move all variables to left:
a2 + a1 + a0 − 3b0 = 3
4a2 + 2a1 + a0 − b0 = 2
2a2 + 3a1 + a0 − 4b0 = 5
2a2 + 4a1 + a0 = 0
Can use Gaussian Elimination (mod 7) to solve

Here, a2 = 3, a1 = 6, a0 = 5, b0 = 6
So q(x) = 3x2 + 6x + 5, e(x) = x + 6
Do poly long division mod 7 to get p(x) = 3x + 2
Original messages: p(1) = 5, p(2) = 1

17 / 18



(Berlekamp-Welch: Example): Continued
Simplify equations mod 7, move all variables to left:
a2 + a1 + a0 − 3b0 = 3
4a2 + 2a1 + a0 − b0 = 2
2a2 + 3a1 + a0 − 4b0 = 5
2a2 + 4a1 + a0 = 0
Can use Gaussian Elimination (mod 7) to solve
Here, a2 = 3, a1 = 6, a0 = 5, b0 = 6
So q(x) = 3x2 + 6x + 5, e(x) = x + 6

Do poly long division mod 7 to get p(x) = 3x + 2
Original messages: p(1) = 5, p(2) = 1

17 / 18



(Berlekamp-Welch: Example): Continued
Simplify equations mod 7, move all variables to left:
a2 + a1 + a0 − 3b0 = 3
4a2 + 2a1 + a0 − b0 = 2
2a2 + 3a1 + a0 − 4b0 = 5
2a2 + 4a1 + a0 = 0
Can use Gaussian Elimination (mod 7) to solve
Here, a2 = 3, a1 = 6, a0 = 5, b0 = 6
So q(x) = 3x2 + 6x + 5, e(x) = x + 6
Do poly long division mod 7 to get p(x) = 3x + 2
Original messages: p(1) = 5, p(2) = 1

17 / 18



Fin
Next time: countability!

18 / 18


