Lecture 11: Countability Infinity is weeeeeird

What Is "Same Size"?

Consider two sets:

{1, 2, 3, 4} $\{0, 1, 2, 3, 4\}$

Are these the same size?

No! Second set has an extra element!

What about:

$$\mathbb{Z}^+ = \{1,2,3,4,...\}$$

$$\mathbb{N} = \{0, 1, 2, 3, 4, ...\}$$

 \mathbb{N} has an extra element...but both are infinite?

Is $\infty + 1 = \infty$?

????

Need different way to think about "size"

Finite Example

Are there same number of circles and squares? How do we know? I can't count to 5...

Idea: Draw lines between squares and circles

Only possible if same number of squares and circles!

How to generalize to infinite sets?

Bijections and Size

Idea: sets "same size" if \exists bijection between them

Does this make sense for finite sets?

Suppose have bijection $b: \{1, 2, 3\} \rightarrow S$

How many elements in *S*?

 $S = \{b(1), b(2), b(3)\}$, so 3 elements as well!

Bijections capture the "same num of elts" idea But also makes sense for infinite sets!

Same Infinities

Claim: $|\mathbb{N}| = |\mathbb{Z}^+|^1$

How can we prove this? Need a bijection!

Claim: f(x) = x + 1 is bijection $\mathbb{N} \to \mathbb{Z}^+$

Why? Has inverse $f^{-1}(y) = y - 1$

But what about f(x) = x? Not onto!

Don't need all functions bijective! Only need one.

Adding one elt to infinite set doesn't seem to change size...what if we added more?

More Infinities

Claim: $|\mathbb{N}| = |\mathbb{Z}|$

How can we map from \mathbb{N} to \mathbb{Z} ?

 $0 \rightarrow 0$

 $1 \rightarrow 1$

 $2 \rightarrow -1$

 $3 \rightarrow 2$

 $4 \rightarrow -2$

Take
$$f(x) = \begin{cases} \frac{x+1}{2} & x \text{ is odd} \\ -\frac{x}{2} & x \text{ is even} \end{cases}$$
Inverse is $f^{-1}(y) = \begin{cases} 2y-1 & y>0 \\ -2y & y \leq 0 \end{cases}$

Inverse is
$$f^{-1}(y) = \begin{cases} 2y - 1 & y > 0 \\ -2y & y < 0 \end{cases}$$

¹Here |S| means the cardinality or "size" of S

Bijection Alternatives

Explicitly stating a bijection can be a pain... What alternatives do we have?

To prove $|S| = |\mathbb{N}|$, can give *enumeration* of S: List "1st" elt of S, then "2nd", then "3rd", etc. Need to eventually hit every element

Ex: For \mathbb{Z} , can enumerate as 0, 1, -1, 2, -2, 3, -3, ...

Careful — need finite position for any element! Ex: 0,1,2,...,-1,-2,-3,... not valid for $\mathbb Z$

Enumeration Example

Definition: $\{0,1\}^*$ is set of finite bit strings

Theorem: $|\{0,1\}^*| = |\mathbb{N}|$

Could give bijection, but lots of words

Instead, enumerate:

 ϵ , 0, 1, 00, 01, 10, 11, 000, 001, 010, ...

Any string with finite length hit eventually!

Have Some More Enumeration

Theorem: $|\mathbb{Z} \times \mathbb{Z}| = |\mathbb{N}|$

Should be surprising — seems like many more pairs! Proof by picture:

Gives an enumeration of $\mathbb{Z} \times \mathbb{Z}!$

20

Be Rational!

How does $|\mathbb{Q}|$ compare to $|\mathbb{Z} \times \mathbb{Z}|$?

Can create function $f: \mathbb{Q} \to \mathbb{Z} \times \mathbb{Z}$ as follows:

If $q = \frac{a}{b}$ in lowest terms, f(q) = (a, b)

 $f(2) = (2,1), f(0.25) = (1,4), f(0.\overline{66}) = (2,3), \text{ etc.}$

Is f a bijection?

No! Not onto (eg (1,0), (-1,-1), (2,4), ...)

But notice: is one-to-one

Can we conclude anything from this?

What Is An Outjection?

Cantor-Schröder-Bernstein Theorem

If \exists injections $f: A \rightarrow B$ and $g: B \rightarrow A$, \exists bijection

Proof in Bonus Lecture tomorrow!

What does this mean to us?

Can say $|A| \leq |B|$ if \exists injection $f: A \rightarrow B$

If $|A| \leq |B|$ and $|B| \leq |A|$, CSB says |A| = |B|!

Note: Have inject $A \to B$ iff have surject $B \to A$

So surjection $B \to A$ means $|B| \ge |A|!$

Back To $\mathbb Q$

Previously: found injection $\mathbb{Q} \to \mathbb{Z} \times \mathbb{Z}$

Hence, $|\mathbb{Q}| \leq |\mathbb{Z} \times \mathbb{Z}| = |\mathbb{N}|$

Notice, have injection $\mathbb{N} \to \mathbb{Q}$ by "inclusion"

So $|\mathbb{N}| \leq |\mathbb{Q}|$

Thus $|\mathbb{Q}| = |\mathbb{N}|!$

20

12 / 20

Brake

Time for a 4-minute break!

Today's Discussion Question:

https://tinyurl.com/70-discussion-q

Countability

Say a set S is *countable* if $|S| \leq |\mathbb{N}|$ So far, all sets we've seen are countable!

 $Natural\ question:\ are\ all\ sets\ countable?$

Turns out, no!

Not With That Attitude You Cant-or

 $\textbf{Def} \colon \operatorname{Let} \, \{0,1\}^{\infty}$ be set of $\textit{infinite length} \, \operatorname{bit} \, \mathsf{strings}$

Theorem: $|\{0,1\}^{\infty}| > |\mathbb{N}|$

Proof:

Suppose for contra \exists onto fn $o: \mathbb{N} \to \{0,1\}^{\infty}$

Method known as Cantor Diagonalization

I Cant-or Think Of A Better Pun

Theorem: $|\mathbb{R}| > |\mathbb{N}|$ Will in fact prove $|[0,1]| > |\mathbb{N}|$

"Proof":

Suppose for contra \exists onto fn $o: \mathbb{N} \to [0,1]$

So we've proved $|[0,1]| > |\mathbb{N}|$...or have we?

Oops

Slight subtlety with \mathbb{R} :

Decimal expansion not always unique!

 $Eg, \ .09999... = .10000...$

+1 to daig ensures different decimal expansion Not necessarily different number!

In our picture, o(0) = 0.999... = .1000... = r

Easily recoverable: just do +2 instead of +1

Moral: be careful when claiming $r \neq o(n)$!

Not Recoverable

"Theorem": $|\mathbb{Q}| > |\mathbb{N}|$

"Proof":

Suppose for contra \exists onto fn $o: \mathbb{N} \to \mathbb{Q} \cap [0,1]$

So we've proved $|\mathbb{Q} \cap [0,1]| > |\mathbb{N}|$...or have we?

7 / 20

18 / 20

Double Oops

How do we know that q is rational? We don't! In picture, $q=\frac{\pi}{10}\not\in\mathbb{Q}$

Doesn't matter that $q \neq o(n)$ Not trying to cover q!

This proof not recoverable — $|\mathbb{Q}| = |\mathbb{N}|$

Moral: make sure construct in required set!

Fin

Next time: computability!

19/20

20 / 20