Lecture 11: Self-Reference and Uncomputability

Self-Referential Subtitles Are Best Subtitles

Liar's Paradox

Self-Reference: "the act or an instance of referring or alluding to oneself; see self-reference"

Can create issues in logical deduction!

Ancient Cretan says "All Cretans are liars"

Are they lying?

Barber says "I shave those who don't themselves"

Does the barber shave themself?

I say "This statement is false"

▶ Is it?

Russell's Paradox

Let S be set of sets that don't contain themselves $S = \{x \mid x \notin x\}$

Does *S* contain itself? Is $S \in S$?

Yes?

▶ If $S \in S$, S defined to *not* include S!

No?

▶ If $S \notin S$, S defined to include S!

Set theory solution: make sure S not definable

In CS, not so easy to avoid!

An Important Aside

Computer programs \equiv binary strings

Means we can pass programs as inputs to programs Program can be own input — allows self-reference!

An Impossible Problem

Halting problem: determine if program halts

Formally, want program TestHalt such that

- If P(x) halts, TestHalt(P, x) = True
- ▶ If P(x) loops, TestHalt(P, x) = False

Thm: Problem undecidable – TestHalt can't exist!

To prove: assume for contradiction TestHalt exists Use self-reference to defeat TestHalt

Turing The Computer Scientist

Assume for contradiction TestHalt exists

```
Turing(P):
    if TestHalt(P, P) = True:
        loop infinitely
    else:
        halt
What does Turing(Turing) do?
Opposite of TestHalt(Turing, Turing)
So TestHalt must be wrong there!
```

Turing The Sassy Teenager

You will halt!

Fine, loop!

I'll loop instead!

Actually, I'll halt!

TestHalt

Turing

But Wait!

Why can't we just simulate P(x) and wait for halt?

Might have to wait forever But TestHalt must return in finite time!

What if I just wait 9000 years? P(x) might need 9001!

OK Sure, But...

...maybe TestHalt is just contrived?

Don't often care what program does on itself

Perhaps better: does program halt with no input?

"Easy" Halting Problem: want ETH such that

- ▶ If P() halts, ETH(P) = True
- ▶ If P() loops, ETH(P) = False

Claim: "Easy" Halting Problem no easier!

Formally: if ETH exists, TestHalt does too

Easy My ***

Suppose ETH exists, can write TestHalt:

```
TestHalt(P, x):
    def P'():
        P(x)
    return ETH(P')
```

Input or none doesn't matter — can just hardcode!

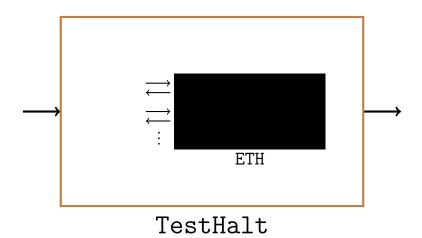
In logic: ETH exists \Longrightarrow TestHalt exists

Contrapos: TestHalt doesn't exist \Longrightarrow ETH doesn't

Already Know TestHalt doesn't exist!

Reductionism

What we just did called a reduction



Reduce To The Problem Of Break Time

Time for a 4-minute break!

Today's Discussion Question:

If you were to write a self-referential discussion question, what would it be?

Recursive Enumerability

What happens if we relax the requirements?

Problem is recursively enumerable 1 if \exists program P

- ▶ If answer for x is true, P(x) outputs true
- ▶ If answer is false, P(x) outputs false or loops

Previously showed that Halting Prob is RE!

Can we find others?

¹Sometimes called *recognizable*, but that doesn't sound as cool.

Entscheidungsproblem

Hilbert's famous "decision problem" (roughly): Given a statement *x*, is it true or false?

Claim: Entscheidungsproblem is undecidable

Proof:

Suppose ∃ program E solving Entscheidungsproblem

```
TestHalt(P, x):
   return E("P(x) halts.")
```

Allows us to solve Halting Problem — no bueno!

Entscheidungsproblem Fortsetzung

Claim: Entscheiwhatever is recursively enumerable

Proof:

- Try all proofs with one step
- If none succeed, try all with two steps
- Next try all with three steps

Note: requires two important assumptions

- Proofs can be checked for correctness
- Only finitely many possible next steps

Both true in sufficiently formal proof systems!

This All Seems Familiar...

Claim: If problem is RE, can reduce to Halting Prob

Proof:

Since RE, have "recognizer" R Suppose also have TestHalt

Solver(x):

if TestHalt(R, x) = false:
 return false
else: return R(x)

Used TestHalt to avoid problems if R loops!

Give Out Complements

What's so special about the false case? What happens if we relax the true case instead?

Problem is co-RE² if \exists program P st

- If answer for x is true, P(x) = true or loops
- ▶ If answer for x is false, P(x) outputs false

Note: "opposite" of RE problem is co-RE

Ex: the "looping problem" is co-RE

Can RE problems be co-RE as well?

²The co- stands for "complement"

RE(EEEEEEEEE)

Thm: Problem is RE and co-RE iff is computable

Proof (if):

Solver satisfies both RE and co-RE

Proof (only if):

- ► Suppose have "recognizers" R and CR
- Run R(x) and CR(x) in parallel
- Once one returns, use that answer

Note: means halting not co-RE, looping not RE!

∃ problems neither RE nor co-RE! Beyond our scope though :'(

Fin

Next time: counting (with Elizabeth)!