
Lecture 11: Self-Reference and
Uncomputability

Self-Referential Subtitles Are Best Subtitles
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Liar’s Paradox
Self-Reference: “the act or an instance of referring
or alluding to oneself; see self-reference”

Can create issues in logical deduction!
Ancient Cretan says “All Cretans are liars”

▶ Are they lying?

Barber says “I shave those who don’t themselves”
▶ Does the barber shave themself?

I say “This statement is false”
▶ Is it?
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Russell’s Paradox
Let S be set of sets that don’t contain themselves
S = {x | x ̸∈ x}

Does S contain itself? Is S ∈ S?
Yes?

▶ If S ∈ S, S defined to not include S!

No?
▶ If S ̸∈ S, S defined to include S!

Set theory solution: make sure S not definable
In CS, not so easy to avoid!
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An Important Aside
Computer programs ≡ binary strings

Means we can pass programs as inputs to programs
Program can be own input — allows self-reference!
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An Impossible Problem
Halting problem: determine if program halts
Formally, want program TestHalt such that

▶ If P(x) halts, TestHalt(P, x) = True
▶ If P(x) loops, TestHalt(P, x) = False

Thm: Problem undecidable – TestHalt can’t exist!
To prove: assume for contradiction TestHalt exists
Use self-reference to defeat TestHalt
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Turing The Computer Scientist
Assume for contradiction TestHalt exists
Turing(P):

if TestHalt(P, P) = True:
loop infinitely

else:
halt

What does Turing(Turing) do?
Opposite of TestHalt(Turing, Turing)
So TestHalt must be wrong there!
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Turing The Sassy Teenager

TestHalt Turing

You will halt! I’ll loop instead!

Fine, loop! Actually, I’ll halt!
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But Wait!
Why can’t we just simulate P(x) and wait for halt?

Might have to wait forever
But TestHalt must return in finite time!
What if I just wait 9000 years?
P(x) might need 9001!
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OK Sure, But...
...maybe TestHalt is just contrived?
Don’t often care what program does on itself

Perhaps better: does program halt with no input?
“Easy” Halting Problem: want ETH such that

▶ If P() halts, ETH(P) = True
▶ If P() loops, ETH(P) = False

Claim: “Easy” Halting Problem no easier!
Formally: if ETH exists, TestHalt does too
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Easy My ***
Suppose ETH exists, can write TestHalt:
TestHalt(P, x):

def P'():
P(x)

return ETH(P')

Input or none doesn’t matter — can just hardcode!
In logic: ETH exists =⇒ TestHalt exists
Contrapos: TestHalt doesn’t exist =⇒ ETH doesn’t
Already Know TestHalt doesn’t exist!
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Reductionism
What we just did called a reduction

TestHalt

ETH
...
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Reduce To The Problem Of Break Time
Time for a 4-minute break!

Today’s Discussion Question:
If you were to write a self-referential discussion
question, what would it be?
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Recursive Enumerability
What happens if we relax the requirements?

Problem is recursively enumerable1 if ∃ program P
▶ If answer for x is true, P(x) outputs true
▶ If answer is false, P(x) outputs false or loops

Previously showed that Halting Prob is RE!
Can we find others?

1Sometimes called recognizable, but that doesn’t sound as cool.
13 / 19
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Entscheidungsproblem
Hilbert’s famous “decision problem” (roughly):
Given a statement x, is it true or false?

Claim: Entscheidungsproblem is undecidable
Proof:
Suppose ∃ program E solving Entscheidungsproblem
TestHalt(P, x):

return E("P(x) halts.")

Allows us to solve Halting Problem — no bueno!
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Entscheidungsproblem Fortsetzung
Claim: Entscheiwhatever is recursively enumerable

Proof:
▶ Try all proofs with one step
▶ If none succeed, try all with two steps
▶ Next try all with three steps
▶ ...

Note: requires two important assumptions
▶ Proofs can be checked for correctness
▶ Only finitely many possible next steps

Both true in sufficiently formal proof systems!
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This All Seems Familiar...
Claim: If problem is RE, can reduce to Halting Prob

Proof:
Since RE, have “recognizer” R
Suppose also have TestHalt

Solver(x):
if TestHalt(R, x) = false:

return false
else: return R(x)

Used TestHalt to avoid problems if R loops!
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Give Out Complements
What’s so special about the false case?
What happens if we relax the true case instead?

Problem is co-RE2 if ∃ program P st
▶ If answer for x is true, P(x) = true or loops
▶ If answer for x is false, P(x) outputs false

Note: “opposite” of RE problem is co-RE
Ex: the “looping problem” is co-RE
Can RE problems be co-RE as well?

2The co- stands for “complement”
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RE(EEEEEEEEEE)
Thm: Problem is RE and co-RE iff is computable

Proof (if):
▶ Solver satisfies both RE and co-RE

Proof (only if):
▶ Suppose have “recognizers” R and CR
▶ Run R(x) and CR(x) in parallel
▶ Once one returns, use that answer

Note: means halting not co-RE, looping not RE!
∃ problems neither RE nor co-RE!
Beyond our scope though :’(
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Fin
Next time: counting (with Elizabeth)!
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