
Counting, Part I

CS 70, Summer 2019

Lecture 13, 7/16/19
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Goals: Probability

I Lets you quantify uncertainty

I Concretely: has applications everywhere!

I Hopefully: learn techniques for reasoning about

randomness and making better decisions logically

I Hopefully: provides a new perspective on the world
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CS 70 Tips

The probability section in CS 70 usually means:

I One big topic, rather than many small topics
I Try your best to stay up to date; use OH!

I Important to be comfortable with the basics

I Fewer “proofs,” more computations
I Emphasis on applying tools and problem solving

I Lectures will be example-driven

I Practice, practice, practice!
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A Familiar Question

How many bit (0 or 1) strings are there of length 3?
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3 choices

bit tf -¥ ¥

⑧

Choices, Choices, Choices...

A lunch special lets you choose one appetizer, one entreé, and

one drink. There are 6 appetizers, 3 entreés, and 5 drinks.

How many di↵erent meals could you possibly get?
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The First Rule of Counting: Products

If the object you are counting:

I Comes from making k choices

I Has n1 options for the first choice

I Has n2 options for second, regardless of the first

I Has n3 options for the third, regardless of the first two

I ...and so on, until the k-th choice

=) Count the object using the product

n1 ⇥ n2 ⇥ n3 ⇥ . . .⇥ nk
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Anagramming I

How many strings can we make by rearranging “CS70”?

How many strings can we make by rearranging “ILOVECS70” if

the numbers “70” must appear together in that order?
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Counting Functions

How many functions are there from {1, . . . , n} to {1, . . . ,m}?

Same setup, but m � n. How many injective functions are there?
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Counting Polynomials

How many degree d polynomials are there modulo p?

If d  p, how many have no repeating coe�cients?
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Exercise .

When Order Doesn’t Matter: Space Team I

Among its 10 trainees, NASA wants to choose 3 to go to the

moon. How many ways can they do this?

10 / 29

=

lot
7 !

10 x 9 × 8=720
people It ¥ ¥3

ABC
ACB
BAC } 6 retorting

-

offs
,z ,

⇒ 7261=120

EEE
- - -

=3 ! Yt
CBA

When Order Doesn’t Matter: Poker I

In poker, each player is dealt 5 cards. A standard deck (no jokers)

has 52 cards. How many di↵erent hands could you get?

11 / 29

O

52 51 SO 49 48=51
cards -

- - - - 47 !

repetitions
¥93

!?¥}s ! se
47 ! 5 !

The Second Rule of Counting: Repetitions

Say we use the First Rule–we make k choices.

I Let A be the set of ordered objects.

I Let B be the set of unordered objects.

If there is an “m-to-1” function from A to B:

=) Count A and divide by m to get |B|.
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Anagramming II

How many strings can we make by rearranging “APPLE”?

How many strings can we make by rearranging “BANANA”?
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Binomial Coe�cients

How many ways can we...

I pick a set of 2 items out of n total?

I pick a set of 3 items out of n total?

I pick a set of k items out of n total?
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Binomial Coe�cients

We often use ✓
n

k

◆
=

n!

k!(n � k)!
to represent the number of ways to choose k out of n items when

order doesn’t matter.

We call this quantity “n choose k”.
We also sometimes refer to these as “binomial coe�cients.”

Q: Using this definition, what does 0! equal?
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Binomial Coe�cients

Using this definition, what does 0! equal?

Should we be surprised that
�n
k

�
=

� n
n�k

�
?
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Anagramming III

How many bit strings can we make by k 1’s and (n � k) 0’s?
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Coincidence?

Is there a relationship between:

1. Length n bit strings with k 1’s, and

2. Ways of choosing k items from n when order doesn’t matter?

Yes!
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Putting It All Together: Space Team II

Among its 10 trainees, NASA wants to choose 3 to go to the

moon, and 2 to go to Mars. They also don’t want anyone to do

both missions. How many ways can they choose teams?

If one member of the moon mission is designated as a captain,

how many ways can they choose teams?
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Putting It All Together: Poker II

How many 5-card poker hands form a full house (triple + pair)?

How many 5-card poker hands form a straight (consecutive

cards), including straight flushes (same suit)?

How many 5-card poker hands form two pairs?
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④ Exercise Sampling Without Replacement

How many ways can we sample k items out of n items, without

replacement, if:

I Order matters?

I Order does not matter?

We were able to use the First and Second rules of counting!
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Sampling With Replacement

How many ways can we sample k items out of n total items, with

replacement, if:

I Order matters?

I Order does not matter?

What can we do when order does not matter?
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When Repetitions Aren’t Uniform: Splitting Money

Alice, Bob, and Charlie want to split $6 amongst themselves.

First (naive and di�cult) attempt: the “dollar’s point of view”
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When Repetitions Aren’t Uniform: Splitting Money

Second attempt: the “divider” point of view
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“Stars and Bars” Application: Sums to k

How many ways can we choose n (not necessarily distinct)

non-negative numbers that sum to k?

Food for thought: What if the numbers have to be positive?
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Summary

I k choices, always the same number of options at choice i
regardless of previous outcome =) First Rule

I Order doesn’t matter; same number of repetitions for each

desired outcome =) Second Rule

I Indistinguishable items split among a fixed number of

di↵erent buckets =) Stars and Bars
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Pick Your Strategy I

You have 12 distinct cards and 3 people. How many ways to:

I Deal to the 3 people in sequence (4 cards each), and the

order they received the cards matters?

I Deal to the 3 people in sequence (4 cards each), but order

doesn’t matter?
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Pick Your Strategy II

You have 12 distinct cards and 3 people. How many ways to:

I Deal 3 piles in sequence (4 cards each), and don’t distinguish

the piles?

I The cards are now indistinguishable. How many ways to deal

so that each person receives at least 2 cards?
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Pick Your Strategy III

There are n citizens on 5 di↵erent committees.

Say n > 15, and that each citizen is on at most 1 committee.

How many ways to:

I Assign a leader to each committee, then distribute all n � 5

remaining citizens in any way?

I Assign a captain and two members to each committee?
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