

Anagramming I How many strings can we make by rearranging "CS70"?	Counting Functions How many functions are there from $\{1,, n\}$ to $\{1,, m\}$?	Counting Polynomials How many degree <i>d</i> polynomials are there modulo <i>p</i> ?
How many strings can we make by rearranging "ILOVECS70" if the numbers "70" must appear together in that order?	Same setup, but $m \ge n$. How many injective functions are there?	If $d \leq p$, how many have no repeating coefficients?
・ロ・・(売・・ミ・・ミークQ()・ 7/29	10+10+12+12+2 900 8/79	・ロ・・(声・・ミ・・ミー) そ つく(つ 9/20
When Order Doesn't Matter: Space Team I	When Order Doesn't Matter: Poker I	The Second Rule of Counting: Repetitions
Among its 10 trainees, NASA wants to choose 3 to go to the moon. How many ways can they do this?	In poker, each player is dealt 5 cards. A standard deck (no jokers) has 52 cards. How many different hands could you get?	 Say we use the First Rule–we make <i>k</i> choices. Let <i>A</i> be the set of ordered objects. Let <i>B</i> be the set of unordered objects. If there is an "<i>m</i>-to-1" function from <i>A</i> to <i>B</i>: ⇒ Count <i>A</i> and divide by <i>m</i> to get <i>B</i> .
<ロ><(2)>(2)>(2)>(2)、(2)、(2)、(2)、(2)、(2)、(2)、(2)、(2)、(2)、	・ロト (費) (ミト (モト) を ののの 11/29	<ロ>・(ラ)・(ミ)・(ミ)・(ミ)・(ミ)・(2/29) 12/29

Putting It All Together: Space Team II	Putting It All Together: Poker II	Sampling Without Replacement
Among its 10 trainees, NASA wants to choose 3 to go to the moon, and 2 to go to Mars. They also don't want anyone to do	How many 5-card poker hands form a full house (triple + pair)?	How many ways can we sample k items out of n items, without replacement, if:
both missions. How many ways can they choose teams?		Order matters?
	How many 5-card poker hands form a straight (consecutive cards), including straight flushes (same suit)?	
If one member of the moon mission is designated as a captain,		Circler door not matter?
how many ways can they choose teams?	How many 5-card poker hands form two pairs?	Order does not matter?
<ロ>・(ラ>・ミ>・ミ> ミ のへへ 19/29	<ロ> (ワ> (ラ> (ミ> (ミ> シ)の() 20/29	We were able to use the First and Second rules of counting!
Sampling With Replacement	When Repetitions Aren't Uniform: Splitting Money	When Repetitions Aren't Uniform: Splitting Money
How many ways can we sample <i>k</i> items out of <i>n</i> total items, with replacement , if:	Alice, Bob, and Charlie want to split \$6 amongst themselves.	Second attempt: the "divider" point of view
► Order matters?	First (naive and difficult) attempt: the "dollar's point of view"	
Order does not matter?		
What can we do when order does not matter?	(ロ) (の) (さ) (さ) (さ) (さ) (2)(0) (2)(2)	<ロ>(ロ>(の)(さ)(さ)(さ) 24/29

"Stars and Bars" Application: Sums to k	Summary	Pick Your Strategy I
How many ways can we choose n (not necessarily distinct) non-negative numbers that sum to k ?	▶ k choices, always the same number of options at choice i regardless of previous outcome ⇒ First Rule	You have 12 distinct cards and 3 people. How many ways to: Deal to the 3 people in sequence (4 cards each), and the rede water the many series and a mattern?
	 Order doesn't matter; same number of repetitions for each desired outcome ⇒ Second Rule 	order they received the cards matters?
	 Indistinguishable items split among a fixed number of different buckets ⇒ Stars and Bars 	
Food for thought: What if the numbers have to be positive ?		Deal to the 3 people in sequence (4 cards each), but order doesn't matter?
・ロ・・ク・ミン・ミン 夏 つくで 25/29	<ロ・(の)、(さい(さい)をつくひ 26/29	(ロ)(費)(き)(き)(き)(き)(き)((27)(2)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)
Pick Your Strategy II	Pick Your Strategy III	
You have 12 distinct cards and 3 people. How many ways to:	There are <i>n</i> citizens on 5 different committees.	
Deal 3 piles in sequence (4 cards each), and don't distinguish the piles?	Say $n > 15$, and that each citizen is on at most 1 committee. How many ways to:	
	► Assign a leader to each committee, then distribute all n - 5 remaining citizens in any way?	
The cards are now indistinguishable. How many ways to deal so that each person receives at least 2 cards?		
	Assign a captain and two members to each committee?	
(ロン・(グレ・ミン・モン・モン・モン・マン・(クレ・マン・マン・マン・マン・マン・マン・マン・マン・マン・マン・マン・マン・マン・	<ロ> (日) (含) (言) (言) (言) (言) (言) (言) (言) (言) (言) (言	