Counting, Part II CS 70, Summer 2019 Lecture 13, 7/16/19	 Recap <i>k</i> choices, always the same number of options at choice <i>i</i> regardless of previous outcome ⇒ First Rule Order doesn't matter; same number of repetitions for each desired outcome ⇒ Second Rule Indistinguishable items split among a fixed number of different buckets ⇒ Stars and Bars Today: more counting strategies, and combinatorial proofs! 	Count by (Disjoint) Cases: Restaurant Menu For lunch, there are 2 appetizers, 4 entreés, and 3 desserts. The apps are salad and onion rings. If I order salad, I want both an entreé and a dessert. If I order onion rings, I only want an additional entreé. How many choices do I have for lunch?
Count by (Disjoint) Cases: Sum to 12 If $x_1, x_2, x_3 \ge 0$, how many ways can we satisfy $x_1 + x_2 + 5 \cdot x_3 = 12$	Counting the Complement: Dice Rolls If we roll 3 die, how many ways are there to get at least one 6? First (naive, but still correct) attempt:	Counting the Complement: Dice Rolls Second attempt:
(ロ)(問)(こ)(こ)(こ)(こ) 4/22	(ロ・・ヴ・・ミ・ミ、ミ、つく) 5/22	(D, (D), (2, (2,), 2,))) 6/22

Counting Using Symmetry: Coin Flips How many sequences of 16 coin flips have more heads than tails? First (naive) attempt:	Counting Using Symmetry: Coin Flips Second attempt: Split the entire set of coin flips into three types: 1. More heads than tails	Counting Using Set Theory: Two Sets Assume A, B, C finite sets. $ A \cup B = A + B - A \cap B $ ("A or B" / "at least one of A, B")
	 More tails than heads Equal numbers of heads and tails 	
<ロ>(ロ>(の)(さ)(さ) まつらび 7/22	(ロ) (分) (注) (注) (注) (注) (注) (注) (注) (注) (注) (注	(ロ) (の) (さ) (さ) (さ) (さ) (さ) (う) (0) (0) (0) (0) (0) (0) (0) (0) (0) (0
Applying Set Theory: Phone Numbers How many 5-digit numbers have a 2 in the first or last position?	Counting Using Set Theory: Three Sets $ A \cup B \cup C = A + B + C - A \cap B - B \cap C - A \cap C + A \cap B \cap C $ ("A or B or C" / "at least one of A, B, C")	Complete Mixups: Warm-Up Alice, Bob, and Charlie each bring a book to class. The books are mixed up and redistributed. How many ways could Alice, Bob, and Charlie each not get their own book ? How many ways can Alice not get her own book, with no restrictions on Bob and Charlie?
		How many ways can Alice and Bob both not get their own book, with no restriction on Charlie?
<ロ>(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(日)(<ロ>(の)(さ)(き)(き)(き)(き)(な)(な) 11/22	<ロ><⑦><そ)、<⑦>、<き>、<き、<き、<き、<き、<うの 12/2

Complete Mixups: A Realization	Complete Mixups: Finishing Argument	The Principle of Inclusion-Exclusion
How many ways can Alice get her own book, with no restrictions		A preview into the discrete probability section
on Bob and Charlie?	A =	Say we have <i>n</i> subsets of a space, A_1, \ldots, A_n .
	B =	
How many ways can Alice and Bob both get their own book, with no restrictions on Charlie?	<i>C</i> =	$\left \bigcup_{i=1} A_i \right = $ (size-1 intersections) – (size-2 intersections)
	$ A \cup B \cup C =$	+ (size-3 intersections) –
The "opposite" problem is easier!		
・ロ・・ <i>聞・</i> ・ミ・・ミ・ ミークへひ 13/22	<ロ> (日)	<ロ><ラ><き><き><き><き><き><き、うへひ 15/22
Intro to Combinatorial Proof: Binomial Coefficients	Pascal's Triangle	Combinatorial Proof I
Powers of $(a + b)$:		Observation #1: Pascal's Triangle is symmetric.
$(a+b)^{0} =$	1	In other words: $\binom{n}{k} = \binom{n}{n-k}$
$(a+b)^1 =$		Algebraic Method:
$(a+b)^2 = (a+b)(a+b)$		
$(a+b)^3 = (a+b)(a+b)(a+b)$		Double-Counting Method ("Combinatorial Proof"):
		Double counting method (Combinational Proof).
	1 5 10 10 5 1	
How about $(a + b)^n$? This is the Binomial Theorem .	► Observation #1:	
	 Observation #1. Observation #2: 	
	 Observation #2: Observation #3: 	
<ロ><⑦> < き> < き> < き> ま ぐ) Q (> 16 / 22	<ロ> (月) (日) (月) (三) (三) (三) (三) (三) (三) (三) (三) (三) (三	<ロ><一>、(□)、(□)、(三)、(三)、(三)、(□)、(□)、(□)、(□)、(□)、(□)、(□)、(□)、(□)、(□

Combinatorial Proof II Observation #2: Adjacent elements sum to the element below. In other words: $\binom{n}{k} = \binom{n-1}{k-1} + \binom{n-1}{k}$ Algebraic Method: Try it yourself! Double-Counting Method ("Combinatorial Proof"):	Combinatorial Proof III Observation #3: Elements in row <i>n</i> sum to 2^n . In other words: $\sum_{i=1}^n {n \choose i} = 2^n$ Algebraic Method: Don't try this at home! Double-Counting Method (" Combinatorial Proof "):	Another Combinatorial Proof From Notes: $\binom{n}{k+1} = \binom{n}{k} + \binom{n-1}{k} + \binom{n-2}{k} + \ldots + \binom{k}{k}$ Algebraic Method: Don't try this at home! Double-Counting Method ("Combinatorial Proof"):
Summary Other counting tools: casework, complements, symmetry	(ロ・ (<i>同</i>)(ミ・(き・ き くうくひ 20/22	・ロ・ (日・ (日・ (日・ (日・ (日・ (日) - (1)
 Set theory is your friend! Principle of inclusion / exclusion Counting problems will ask you to decide what tool to use and often combine strategies 		
Combinatorial proof: count the same thing in two ways! (C)		