	Review of Last Thursday	Making Use of Information I
Conditional Probability	Proceed methodically.What are the possible outcomes?	Let's play a game. We have a full, standard deck of cards. I flip the top card and if it's red, I win. If it's black, you win.
	What is the probability for each outcome?	What is your probability of winning?
CS 70, Summer 2019	Is the sample space uniform or non-uniform?	
Lecture 16, 7/22/19	For uniform probability spaces, boils down to counting!	Now, you swipe 6 cards from the bottom of the deck when I'm not looking. Four are black, and two are red.
	 Use the same techniques: First Rule, Second Rule, complements, set theory, symmetry, etc. 	Do you still want to play the game?
	Be consistent between your numerator and denominator	
<ロ>・(ラ)・(き)・(き)、き のへ()・ 1/24	<ロ>・(ワ)・(き)・(き)・(き)・(き)・(2/24) 2/24	<ロ> (費) (言) (言) (言) (言) (言) (言) (言) (言) (言) (言
Making Use of Information II	Conditional Probability	Sanity Check!
I flip 3 fair coins. What is the probability of exactly 2 heads? Recall: uniform probability space on 8 outcomes .	I want to find the probability of event A, in sample space Ω . I have additional information that event B is true.	What is $\mathbb{P}[B A]$?
I flip my first coin, and it is a head . Now, what is the probability I get exactly 2 heads?		List two different ways to write $A \cap B$.
	We need a new sample space, $\Omega'=$	If we know $\mathbb{P}[A B]$, how do we find $\mathbb{P}[\overline{A} B]$?
	$\mathbb{P}[A B] =$	What is $\mathbb{P}[A B]$ if A, B are disjoint ?
<ロ> <ラ> <き> くき> くき> くき> くき 4/24	<ロ><ラ><ラ><き><き>シーキーのQC 5/24	(ロ> (費) (注) (注) (注) (注) (注) (注) (注) (注) (注) (注

Pocket Aces (From notes.) I deal two cards. What is the probability that the second is an ace, given the first is also an ace? $A = B =$	Dice Roll I roll a red die and a blue die. Both are fair. If I know they sum to 6, then what is the probability that the red die is odd? A = B =	Probability by Disjoint Cases I I have two coins: one fair, one biased. The biased coin comes up heads with probability $\frac{3}{4}$. I pick one coin uniformly at random. What is the probability I get heads?
<ロ><ラ><ラ><き><き><き><き><き><うへ(* 7/24	<ロト (日)	<ロ> <合> < き> < き> < き > き < つ, < 9/24
Probability by Disjoint Cases II	Probability by Disjoint Cases II	Total Probability Rule: Tree View
Each day, the weather in Berkeley is sunny wp 0.7, cloudy wp 0.2, and rainy wp 0.1.		
On a sunny day, there is a 0.2 probability I need a jacket. On a cloudy day, this probability is 0.5. On a rainy day, this probability is 0.8.		
What is the probability that I don't need a jacket?		
$W_1 =$		
$W_2 =$		
$W_3 =$		
J =		
<ロ> (ラ) (さ) (さ) (こ) (こ) (こ) (こ) (こ) (こ) (こ) (こ) (こ) (こ	<ロト (費) くさり (き) しんひょうのので 11/24	<ロ> < ⑦ > < ミ > < ミ > ション () への) へいしょう () へいしょ) () へいしょ) () へいしょ) () () () () () () () () () (

Total Probability Rule: Set View	Total Probability Rule: Algebra View	Tip: Label Your Information!
Let $B_1, B_2, B_3, \ldots, B_n$ be a partition of the space.	Let $B_1, B_2, B_3, \ldots, B_n$ be a partition of the space.	
$\mathbb{P}[A] = \mathbb{P}[A \cap B_1] + \mathbb{P}[A \cap B_2] + \ldots + \mathbb{P}[A \cap B_n]$	$\mathbb{P}[A] = \mathbb{P}[A \cap B_1] + \mathbb{P}[A \cap B_2] + \ldots + \mathbb{P}[A \cap B_n]$	(From notes.) You're slated to play a match against either opponent X or opponent Y .
		The probability that you play against X is 0.6. You beat X wp 0.7. You beat Y wp 0.3
	Two Cases , <i>B</i> and \overline{B} : $\mathbb{P}[A] =$	What is the probability of winning?
	- [/ J -	
<ロ>(日)(日)(さ)(さ)(さ)(さ) 13/24	<ロ>(の)(さ)(さ)(さ)(さ)(な)(な)(な)(な)(な)(な)(な)(な)(な)(な)(な)(な)(な)	(ロ) (の) (さ) (さ) (さ) (さ) (さ) (さ) (さ) (さ) (さ) (さ
Consolidate and Solve!	Bayesian Inference	Bayes' Rule: Two Cases
$\mathbb{P}[W X] = \mathbb{P}[W \overline{X}] =$	I have two coins: one fair, one biased . The biased coin comes up heads with probability $\frac{3}{4}$. I got a head. What is the probability my coin was biased?	We partition our space into two events, B, \overline{B} . Say we know $\mathbb{P}[A B]$, $\mathbb{P}[A \overline{B}]$, and $\mathbb{P}[B]$.
$\mathbb{P}[X] = \mathbb{P}[\overline{X}] =$		$\mathbb{P}[\mathcal{B} \mathcal{A}] =$
$\mathbb{P}[W] =$		
<ロト < (四ト < (西ト < 三ト < 三ト) < (で) 16 / 24	<ロ> 〈ワ> 〈ラ> 〈き> 〈き> 〉 き つうぐつ 17/24	<ロ> (長) (注) (注) (注) (注) (注) (注) (注) (注) (注) (注

Bayes' Rule: Mul	tiple Cases	Tip: Label Your Information!	Tip: Label Your Information!
	e into events, $B_1, B_2, \dots B_n$. or all <i>i</i> , and $\mathbb{P}[B_i]$ for all <i>i</i> .	(From notes.) A pharmaceutical company is marketing a new test for a certain disease.	The disorder affects 5% of the population.
$\mathbb{P}[B A] =$			
		 When applied to an affected person, the test is positive wp 0.9. It is negative wp 0.1 (false negative). 	What is the probability that a person is affected if they test positive ?
		 When applied to an unaffected person, the test is negative wp 0.8. It is positive wp 0.2 (false positive). 	
	・ロ・・グ・・ミ・ミン き つうく 19/24		・ロ・・ <i>の</i> ・・ミ・・ミ・ ミージへ(* 21/24
Consolidate and S	Solve!	Summary	
$\mathbb{P}[P A] =$	$\mathbb{P}[\mathcal{P} \overline{\mathcal{A}}] =$	 The conditional probability of A given B (i.e. P[A B]) involves restricting the sample space to B Lets you compute P[A ∩ B] as well: 	
$\mathbb{P}[\mathcal{A}] =$	$\mathbb{P}[\overline{\mathcal{A}}] =$	$\mathbb{P}[A \cap B] = \mathbb{P}[A B] \mathbb{P}[B] = \mathbb{P}[B A] \mathbb{P}[A]$	
$\mathbb{P}[A P] =$		 "Total probability rule" is a fancy way of saying probability by disjoint cases 	
		 "Bayes' Rule" is just an application of the definition of conditional probability and total probability rule. 	
		Lets you "flip" the conditioning: Given information like $\mathbb{P}[A B_i]$, compute $\mathbb{P}[B_i A]$.	
	・ロ・・⑦・・ミ・・ミ・ ミー シス(2/24) 22/24	(ロ)(の)(さ)(さ)(さ)(さ)(さ)(さ)(さ)(さ)(さ)(さ)(さ)(さ)(さ)	