Intersections and Unions of Events

CS 70, Summer 2019

Lecture 17, 7/23/19



Last Time: Conditional Probability
» IP[A|B]:restricting the sample space to B

P[AN B] = P[A|B] P[B] = P[B|A] P[A]

» “Total probability rule:” probability by disjoint cases

» “Bayes’ Rule”: definition of conditional probability +
total probability rule

» Lets you “flip” the conditioning
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Computing Intersections

For any events A, B:
plan e - PLA|R) - PLE]
= PlelA])- PLA]
What about any (three) events, A, B, C?

P[@ N B)m c] = [P[ AN |C] P(C]
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Computing Intersections: Chaining

For any events A;, A, ..., A

A Al,q,we,n p{Aq\A O A0A,)
ﬂA = P[A] - IP’[AQIAl] P[As| A1 N As] - .
i=1 VV—/‘

R inrersecion of A; As,ta\X‘"A

Proof: Details are in the notes. utz

General ldea: 'Iﬂd\l(“’ lOY\” ’

Key Insight: Treat (AL N A>N...NA,;_1) as one event,
treat A, alone as another

Very similar to.. ‘p [(A a...NAn- 0) N A’\_.\ o\ﬂ’\'vd_

MT1, mduchon one event
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Drawing Cards |

| draw 4 cards sequentially from a standard deck, without
replacement. What is the probability that all 4 are clubs?
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Drawing Cards Il

(Modified from notes.) | am dealt 5 cards. What is the
probability that all five cards are the same suit, and none of
them are face cards?
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Independent Events

Forvents A B:

P[AN B] = P[A|B] - P[B] = P[B|A] - P[A]

doesil hovt b be independent .

Two events A, B are independent if and only if:
pan s = PA] P R]

which is equivalent to both:
plAlB] = PA]
PBIA = P[6]



Independent or Not?

HH
» Flipping two fair coins: HT
A= flip 1is heads, B = flip 2 is tails. | ")

AN}
PlAl- . Plan®l= %
Ple)-3  nect: Fiy-d

> Rolling one red die, one blue die:
=sumis 3, B =red die is 1.
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Independent or Not?

» Rolling one red die, one blue die:
A=sumis 7, B=reddieis 1.

PCAY: 2= 1 @[Ane’l PLR=),®8=b)

,

\P[%—J‘J—Q TR 3“’

» Throwing 3 labeled balls into 3 labeled bins:
A = Bin #1 is empty, B = Bin #2 is empty.
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Independent or Not?

A, B are generic events. The table shows probabilities of
the intersections of the row and column.

Event A Event A
Event B | P[ANB]=0.4 | PIANB]=0.3

Event B | PIANB] =0.2 | PIANB] =0.1
What is P[A]? - PLANB ] + PLA 08}z 04+02- 0
What is P[B]7 = P[ANB)+ PTANB)>04+03:07
Are A and B independent? 0.4 2(06)01) X
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Mutual Independence

How do we generalize independence from two events A, B,
to multiple events A;, A,, . . ., A,?

Definition (Mutual Independence, Ver. 1)

Al A L, A, are mutually independent if:

For ever@ {1,2,..., n}, with |1] > 2,
subsu- _ .
Y 7|0 Tl

Ex: For 3 events

e A= PLA] PLAPIASL

vE€$,1,3)
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Mutual Independence
Definition (Mutual Independence, Ver. 2)

Al A, L, A, are mutually independent if:

For every choice of B; € {A;, A}

P[B;NB.N...N B, =] PIB]
i=1

~ FO{P3{€Vth(t?:\ K?, N Z 3] = PCA t-s ‘P[EZ] \P{A;] )
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A Weaker Idea: Pairwise Independence

Definition (Pairwise Independence) A, A, .. ., A, are
pairwise independent if:
For every i #jin {1,2,..., n}:
P[A; N Al = P[A] - P[A]

Q: Does mutual imply pa|rW|se7

Q: Does pairwise imply mutual? No
L> \)\'ScuSS\on



Using (Mutual) Independence: Coin Flips

. . Fone
What is the probability that after n flips, we have k heads
and (n — k) tails? A n-
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Using (Mutual) Independence: Dice Rolls

We roll n red dice and n blue dice.
What is the probability that all the red dice are even, and all

the blue dice are > 57 EX eX(iGe .



Break

Back by popular demand...

Would you rather only use spoons (no forks) or only use
forks (no spoons) for the rest of your life?

A joke... Why was 6 afraid of 77 Because seven ate nine.
Now, why was 7 afraid of 87

16 /25



Unions of Events

Same exact story as in counting...

A %

\

plavs)= PIAT T P(B] - PANR]



Unions of Events

Same exact story as in counting...

ANBAC
b C

P[AUBUC] = P{A’x-f 1284 *\P{C]
— pranel- (a0} -PLBACT
x pPLanBAC]



Unions Example: Rolling 3 Die

| roll a red die, a blue die, and a green die.
What is the probability that at least one of these happen?

o > onionl )

A) The red die's number is 3, or 4
B) The blue die’s number is 5.

C) The green die's number is 1 or 6.
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Example: Rolling 3 Die

Continued..
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Principle of Inclusion and Exclusion

Same exact story as in counting...

For probability: Let Ay, As, ..., A, be events in our
probability space. Denote {1,2, ..., n} by [n]. Then: \N\% K

\2 Q \‘«( sl

P[A,‘ﬂAjﬂAk]—...
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The Union Bound

Q: What is the maximum possible value of the following?

P[A;UA, U...UA,

\ v [WA\ ) AZU Pﬁg-s
- pIAPIAS
T \P[Az—l

PA;UAU...U An] is always upper bounded by

| N _
< P(ANY. 1 P{An) = %\‘ PlA




Union Bound Example: Rolling 3 Die

| roll a red die, a blue die, and a green die.

What is an easy upper bound on the probability that at
least one of these happen?

A) The red die's number is 3 or 4.

B) The blue die’s number is 5.

C) The green die's number is 1 or 6.



Summary

» Computing event intersections = chaining conditional
probabilities

» Independent events = directly multiply probabilities
» Mutual independence # pairwise independence
» Computing event unions = same exact strategy from

counting!
» Draw the Venn diagram for 2 events, 3 events

» Principle of Inclusion-Exclusion for multiple events

» Union bound = worst case, the events are disjoint!



Tips for Counting and Probability

v

Don’t overthink it! Consider one thing at a time.

v

Label your events!! Be cognizant of whether or not
you are conditioning.

v

If you have time, try a different strategy and see if it
gets you the same answer (e.g. cases vs. complement)

v

Try small examples to sanity-check your strategy!

v

Practice, practice, practice!



