
Intersections and Unions of Events

CS 70, Summer 2019

Lecture 17, 7/23/19
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Last Time: Conditional Probability

I P[A|B]:restricting the sample space to B

P[A \ B] = P[A|B]P[B] = P[B|A]P[A]

I “Total probability rule:” probability by disjoint cases

I “Bayes’ Rule”: definition of conditional probability +
total probability rule

I Lets you “flip” the conditioning
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Computing Intersections
For any events A,B:

P[A \ B] =

What about any (three) events, A,B,C?

P[A \ B \ C ] =
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Computing Intersections: Chaining
For any events A1,A2, . . . ,An:

P
"
n\

i=1

Ai

#

= P[A1] · P[A2|A1] · P[A3|A1 \ A2] · . . .

Proof: Details are in the notes.

General Idea:

Key Insight: Treat (A1 \ A2 \ . . . \ An�1) as one event,
treat An alone as another.

Very similar to...
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Drawing Cards I
I draw 4 cards sequentially from a standard deck, without

replacement. What is the probability that all 4 are clubs?

Ci =

P[C1 \ C2 \ C3 \ C4] =
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Drawing Cards II
(Modified from notes.) I am dealt 5 cards. What is the

probability that all five cards are the same suit, and none of

them are face cards?

C1 =
For 2  i  5: Ci =

P[C1 \ C2 \ C3 \ C4 \ C5] =
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Independent Events
For any events A,B:

P[A \ B] = P[A|B] · P[B] = P[B|A] · P[A]

Two events A,B are independent if and only if:

P[A \ B] =

which is equivalent to both:

P[A|B] =

P[B|A] =
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Independent or Not?

I Flipping two fair coins:
A = flip 1 is heads, B = flip 2 is tails.

I Rolling one red die, one blue die:
A = sum is 3, B = red die is 1.
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Independent or Not?

I Rolling one red die, one blue die:
A = sum is 7, B = red die is 1.

I Throwing 3 labeled balls into 3 labeled bins:
A = Bin #1 is empty, B = Bin #2 is empty.
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Independent or Not?
A,B are generic events. The table shows probabilities of
the intersections of the row and column.

Event A Event A

Event B P[A \ B] = 0.4 P[A \ B] = 0.3

Event B P[A \ B] = 0.2 P[A \ B] = 0.1

What is P[A]?

What is P[B]?

Are A and B independent?

10 / 25

= IP [ An B ] t PCA ABT = 0.4-10.2--0.6

= IPC An B ] t PEE n B ] = 0.4-10.3 = 0.7

0.4 I ( O
. 6)L 0.7 ) X



Mutual Independence
How do we generalize independence from two events A, B,
to multiple events A1,A2, . . . ,An?

Definition (Mutual Independence, Ver. 1)

A1,A2, . . . ,An are mutually independent if:

For every I ✓ {1, 2, . . . , n}, with |I | � 2,

P
"
\

i2I

Ai

#

=
Y

i2I

P[Ai ]

Ex: For 3 events:
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Mutual Independence
Definition (Mutual Independence, Ver. 2)

A1,A2, . . . ,An are mutually independent if:

For every choice of Bi 2 {Ai ,Ai}:

P[B1 \ B2 \ . . . \ Bn] =
nY

i=1

P[Bi ]

Ex: For 3 events:
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A Weaker Idea: Pairwise Independence
Definition (Pairwise Independence) A1,A2, . . . ,An are

pairwise independent if:

For every i 6= j in {1, 2, . . . , n}:

P[Ai \ Aj ] = P[Ai ] · P[Aj ]

Q: Does mutual imply pairwise?

Q: Does pairwise imply mutual?
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Using (Mutual) Independence: Coin Flips
What is the probability that after n flips, we have k heads
and (n � k) tails?
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Using (Mutual) Independence: Dice Rolls
We roll n red dice and n blue dice.
What is the probability that all the red dice are even, and all

the blue dice are � 5?
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Break
Back by popular demand...

Would you rather only use spoons (no forks) or only use

forks (no spoons) for the rest of your life?

A joke... Why was 6 afraid of 7? Because seven ate nine.
Now, why was 7 afraid of 8?
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Unions of Events
Same exact story as in counting...

P[A [ B] =
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Unions of Events
Same exact story as in counting...

P[A [ B [ C ] =
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Unions Example: Rolling 3 Die
I roll a red die, a blue die, and a green die.

What is the probability that at least one of these happen?

A) The red die’s number is 3, or 4

B) The blue die’s number is 5.

C) The green die’s number is 1 or 6.

P[A] =

P[B] =

P[C ] =
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Example: Rolling 3 Die
Continued...

P[A \ B] =

P[A \ C ] =

P[B \ C ] =

P[A \ B \ C ] =

P[A [ B [ C ] =
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Principle of Inclusion and Exclusion
Same exact story as in counting...

For probability: Let A1,A2, . . . ,An be events in our
probability space. Denote {1, 2, . . . , n} by [n]. Then:

P
"
n[

i=1

Ai

#

=
X

{i}✓[n]

P[Ai ]�
X

{i ,j}✓[n]

P[Ai \ Aj ]

+
X

{i ,j ,k}✓[n]

P[Ai \ Aj \ Ak ]� . . .

. . .+ (�1)n+1 P[A1 \ A2 \ . . . \ An]
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The Union Bound

Q: What is the maximum possible value of the following?

P[A1 [ A2 [ . . . [ An]

A:

P[A1 [ A2 [ . . . [ An] is always upper bounded by
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Union Bound Example: Rolling 3 Die

I roll a red die, a blue die, and a green die.

What is an easy upper bound on the probability that at
least one of these happen?

A) The red die’s number is 3 or 4.

B) The blue die’s number is 5.

C) The green die’s number is 1 or 6.
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Summary

I Computing event intersections = chaining conditional
probabilities

I Independent events = directly multiply probabilities

I Mutual independence 6= pairwise independence

I Computing event unions = same exact strategy from
counting!

I Draw the Venn diagram for 2 events, 3 events

I Principle of Inclusion-Exclusion for multiple events

I Union bound = worst case, the events are disjoint!
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Tips for Counting and Probability

I Don’t overthink it! Consider one thing at a time.

I Label your events!! Be cognizant of whether or not
you are conditioning.

I If you have time, try a di↵erent strategy and see if it
gets you the same answer (e.g. cases vs. complement)

I Try small examples to sanity-check your strategy!

I Practice, practice, practice!
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