

	Questions		Example: Returning HW
Intro to Random Variables CS 70, Summer 2019 Lecture 18, 7/24/19	 day, when will I first If I pick a random w population, what is If I mix up Alice, Box 	th 9 other people every st win? voman from the US her height? bb, and Charlie's HW em, how many of them	(From notes.) Let X_3 = the number of fixed points $\begin{array}{r} \hline Permutation & X_3 \\ \hline ABC & 3 \\ \hline ACB & 1 \\ \hline BAC & 1 \\ \hline BCA & 0 \\ \hline CAB & 0 \\ \hline CBA & 1 \\ \hline \end{array}$
Definition: Random Variable Let Ω, ℙ correspond to a probability space. A random variable X is a function! For every outcome, X assigns it a real number. Discrete random variable X assigns a countable number of values.	Connections to Probability Space: • Events are sets of outcomes. • $\mathbb{P}[A] = \sum_{\omega \in A} \mathbb{P}[\omega]$	Cobability Intro Random Variable X: • Events are sets of outcomes given the same value by X $\{\omega \in \Omega : X(\omega) = a\}$ • $\mathbb{P}[X = a] = \sum_{\omega \text{ if } X(\omega) = a} \mathbb{P}[\omega]$	 Definition: Distribution The distribution of a random variable X consists of two things: The values X can take on. HW example: The probability of each value. HW example:
<ロ><週><2><そ、そ、そ、そ、そ、そ、そのので 4/26		<ロ><ラ><ラ><そ>、	(日)(例)(注)(注)(注)(注)(日)(例)(注)(注)(注)(注)(注)(注)(日)((1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1)(1

Binomial Random Variable Binomial Example: Weather I Binomial Example: Weather II Models how many heads are in *n* **biased coin flips** Each day, if it is sunny in Berkeley with probability What is the probability that over a 10 day period. 0.8 and cloudy with probability 0.2. there are at least two sunny days? \implies Models a sum of independent, identically Weather across days is independent. distributed (**i.i.d**) Bernoulli(p) RVs. What is the probability that over a 10 day period, there are exactly 5 sunny days? Possible values of X: $\mathbb{P}[X = i] =$ n =p =**Parameters**: *n*, *p* Notation: $X \sim Bin(n, p)$ 100 5 (B) (E) (E) (B) (0) 13/26 14/26 **Break Geometric Random Variable Probabilities Sum To** 1? Models how many **biased coin flips** I need until Not obvious that the probabilities sum to 1. my first head. $\sum_{i=1}^{\infty} (1-p)^{i-1}p =$ \implies Models time until a "success" when performing **i.i.d.** trials with **success** probability *p* What is your real favorite movie, and what movie Each term is the previous \times the **same** multiplier. do you pretend is your favorite to sound cultured? Possible values of X: $\{a, ar, ar^2, ar^3, \ldots\}$ is a **geometric sequence**. $\sum_{i=1}^{\infty} ar^{i-1} = \frac{a}{1-r}$ $\mathbb{P}[X = i] =$ **Parameters**: **Success** probability *p* Notation: $X \sim \text{Geometric}(p)$ < 中 > < 四 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < 回 > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □

Poisson Example: Typos	Summary
We type 200 pages. The pages are all independent. What is the probablity that at least one page has exactly 5 typos?	 Random variables assign numbers to outcomes.
	► Treat X = i as any ordinary event.
	 Bernoulli, Binomial, and Geometric RVs have nice interpretations via biased coin flips.
	 Practice modeling real world events as Bernoulli, Binomial, Geometric, Poisson.
(ロ)(費)(注)(注)(注)(注)(注)(25/26)	・ロ・・(D)・・ミ・・ミ・ そ つくで 26/26