
Intro to Random Variables

CS 70, Summer 2019

Lecture 18, 7/24/19
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Questions

I If I flip 20 coins, how many are heads?

I If I enter a ra✏e with 9 other people every

day, when will I first win?

I If I pick a random woman from the US

population, what is her height?

I If I mix up Alice, Bob, and Charlie’s HW

before returning them, how many of them

will get their own HW back?
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Example: Returning HW

(From notes.)

Let X3 = the number of fixed points

Permutation X3
ABC 3

ACB 1

BAC 1

BCA 0

CAB 0

CBA 1
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outcomes →

after returning X 3
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- to

Bob gets Charlie 's

Charlie gets A 's



Definition: Random Variable

Let ⌦,P correspond to a probability space.

A random variable X is a function!

For every outcome, X assigns it a real number.

Discrete random variable:

X assigns a countable number of values.
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Connections to Probability Intro

Probability Space:

I Events are sets of

outcomes.

I P[A] =
P
!2A P[!]

Random Variable X :

I Events are sets of

outcomes given the

same value by X

{! 2 ⌦ : X (!) = a}

I P[X = a] =P
! if X (!)=a P[!]
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.



Definition: Distribution

The distribution of a random variable X consists
of two things:

I The values X can take on.
HW example:

I The probability of each value.

HW example:
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Xz = # Of fixed points , 3 Students
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Sanity Check!

I What should the probabilities sum to, across

all values X can take on?

I Can X take on negative values?

I Can X take on an infinite number of values?

I Countable values?

I Uncountable values?
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Working with RVs

Let X be a random variable with the following
distribution:

X =

8
><

>:

1 wp 0.4

1

2
wp 0.25

�1
2

wp 0.35

What is the probability that X is positive?
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PEX > O ] = DEX =L ] t PEX - I ]

= 0.4 t 0.25  
= 0.65



Functions of RVs

Same definition for X

X =

8
><

>:

1 wp 0.4

1

2
wp 0.25

�1
2

wp 0.35

Write the distribution of f (X ), where f : R! R.
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Wp 0.4
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Functions of RVs

Same definition for X

X =

8
><

>:

1 wp 0.4

1

2
wp 0.25

�1
2

wp 0.35

Write the distribution of X 2.
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Bernoulli Random Variable

Models whether one biased coin flip is a head.

=) Models a yes/no-type question or event

Possible values of X :

P[X = ] = p

Parameters: p

Notation: X ⇠ Bernoulli(p)
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Bernoulli Example: Indicators

If X ⇠ Bernoulli(p), and X = 1 corresponds to an
event A in an experiment:

=) We say that X is an indicator for A.

Each day, if it is sunny in Berkeley with probability

0.8 and cloudy with probability 0.2.
Indicator for a sunny day?
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S = indicator for a sunny day

S= {to Wp .

0.8

w p . 0.2



Binomial Random Variable

Models how many heads are in n biased coin flips

=) Models a sum of independent, identically

distributed (i.i.d) Bernoulli(p) RVs.

Possible values of X :

P[X = i ] =

Parameters: n, p

Notation: X ⇠ Bin(n, p)
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Binomial Example: Weather I

Each day, it is sunny in Berkeley with probability

0.8 and cloudy with probability 0.2.
Weather across days is independent.

What is the probability that over a 10 day period,

there are exactly 5 sunny days?

n = , p =
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S = # sunny over 10 days .

S ~ Binh , p) 10 0.8

PCS ;?]
-

- ( ' f)
10.850.25- w -

(ni ) pi a - pgn
- i

Let Si - Berto . 8)
.
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- Iif day i is 5=5 ,
+ Sat - - . tsn

sunny .



Binomial Example: Weather II

What is the probability that over a 10 day period,

there are at least two sunny days?
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IPCSZ 2) = 1 - Pf SE I ] c- complement

= 1- PCS -
- O ] - PCS =D

-
-

use distribution BINGO , 0.8 )

IP [5--0]=(18/10.8)%0.2110--9.

IF
PCS - 17=(1,0×0.8/40.2)

9 = 10 - 0.8 - 0.29

PCS 223=1-0.2 )
"

- 1010.8/10.239



Break

What is your real favorite movie, and what movie

do you pretend is your favorite to sound cultured?
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Geometric Random Variable

Models how many biased coin flips I need until

my first head.

=) Models time until a “success” when

performing i.i.d. trials with success probability p

Possible values of X :

P[X = i ] =

Parameters: Success probability p

Notation: X ⇠ Geometric(p)
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Probabilities Sum To 1?
Not obvious that the probabilities sum to 1.

1X

i=1

(1� p)i�1p =

Each term is the previous ⇥ the same multiplier.
{a, ar , ar 2, ar 3, . . .} is a geometric sequence.

1X

i=1

ar i�1 =
a

1� r
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Aside: The Formula

An easy way to recreate the formula?

Let S = a + ar + ar 2 + . . .

Key Idea:

r · S = ar + ar 2 + ar 3 + · · · =

Solve for S!
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←
SUM Of all

terms
.

distributing r

d → →

S - a

r S -

- S - a

a = S - S r

a = sci - r ,
I

s = Fr

If I r I 21
,

"

S = a
"

→ doesn't work
.



Geometric Example: Ra✏e I

I enter a ra✏e with 9 other people every day.

Each day, a winner is chosen independently, and

with equal probability.

What is the probability that I win for the first

time on the 5th day?

p =
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W = day of first WIN
.

÷

Ipfw -
- 5 ] = ( fo )4(wt)



Geometric Example: Ra✏e II

What is the probability that I win the ra✏e some

time on or before the 8th day??

If X ⇠ Geometric(p), then:

P[X i ] =
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Poisson Random Variable

Models number of rare events over a time period

=) Use the “rate” of event per unit time.

Possible values of X :

P[X = i ] =
�i

i !
e��

Parameters: Rate �

Notation: X ⇠ Poisson(�)
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Probabilities Sum To 1?
Again, not obvious that the probabilities sum to 1.

1X

i=0

�i

i !
e�� =

Taylor Series for ex :

ex =
1X

i=0

x i

i !
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Poisson Example: Typos

(Notes.) We make on average 1 typo per page.

The number of typos per page is modeled by a

Poisson(�) random variable.

What is the probability that a single page has

exactly 5 typos?

� =
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T = # typos per page .

I

BET = s ] = if ,
e-

'
= to e-

'
= Toe



Poisson Example: Typos

We type 200 pages. The pages are all

independent. What is the probablity that at least

one page has exactly 5 typos?
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p [ at teas!f- Pg . ] = z - p [ n of?F)
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Summary

I Random variables assign numbers to

outcomes.

I Treat X = i as any ordinary event.

I Bernoulli, Binomial, and Geometric RVs have

nice interpretations via biased coin flips.

I Practice modeling real world events as

Bernoulli, Binomial, Geometric, Poisson.
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