RVs Continued: Joint
Distribution and Intro to
Expectation

CS 70, Summer 2019

Lecture 19, 7/25/19

From Yesterday...
» RVs assign numbers to outcomes.
» Treat X =/ as any ordinary event.

» Bernoulli, Binomial, Geometric, Poisson RVs.
Today:

» Joint Distributions, Independent RVs,
Conditional Probability

» Introduction to expectation and linearity of
expectation

Joint Distribution

Lets you work with multiple random variables.
No different from intersections of events!

RV X: takes values a in set A }Dﬂh’nﬂ/\j sets of

RV Y': takes values b in set B evenss.

Joint Distribution; _X"% _—Y-b

Values: {(0, b): aeA,beBE og\gg\;‘:‘o\

Specify the Probabilities: e
P[(0,0)]= PLX=aNY-b]- P[X=0,Y-b]

Joint Distribution: Example |
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Joint Distribution: Example Il

X=1|X=2|X=3
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Joint Distribution: Example IlI

X=1|X=2|X=3
2] 0.2 0.2 0.1
3] 0.1 0 0.3
4 0 0.1 0
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Are the events X = 1 and Y = 2 independent?
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Independent Random Variables

RVs X (values in A) and Y (values in B) are
independent if:

forallac A be B:

PX =a, v =b = [ X= &} P[ Y- b]

Essentially the same story as ordinary events!!

Conditional Distributions

Also the same exact story:

X=1|X=2|X=3
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Memorylessness of Geometrics

Memoryless: For all positive integers s, t:
PX > s+ t|X > t]=P[X > 5] redundant
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Let X ~ Geometric(p). X is memoryless: l/
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Sum of ng Independent Poissons
N2~ o2, .-
Let X ~ Poisson(};), Y ~ Poisson(Xs).
X and Y are independent.
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Break

Which building on or near campus is your “spirit
building” ?

Expectation of a RV

Also called the mean or average of a RV.
Let X be a RV with values in A.

Its expectation is defined as:

Ex) =20, o PLA=0]
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Expectation of a RV: Example |

1 wp 0.4
X=41 wp 0.25
-1 wp 0.35
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Expectation of a RV: Example Il

X=1|X=2|X=3
2| 0.2 0.2 0.1
3| 0.1 0 0.3
4 0 0.1 0
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_ 1 ®[x=17+ 2 PLX=2)+3- Px=3]
= 1(03)+2(03) +3(09=@QJ)

E[y] = 2(05)+3(04) +40)
= 4+12+0¢% =

E[X]

Expectation of a Bernoulli
Recall that if X ~ Bernoulli(p)

PX=1]=p

PIX=0]=1-p

50
Then: E[X] = ©O- -Jp)+l-P
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Mixing Up HW

n students turn in their HW, but | accidently mix
them up. | return HW to the students, so that
each mixup (permutation) is equally likely.

What is the expected number of students who get
their own HW back?

osw: 0,1-)2, cy n-4HM.
Uil

. " \

gipe oF oo space o
¢ ‘xed - nacd (
?\“m(\ﬁ P[\FF\X\%‘G Li& S O ¢

=>MEn 18 nNot enmgh\_

Linearity of Expectation

The definition of expectation isn't always easy to
use. Linearity remedies this.

— Theorem: Let Xi, X5, ..., X, be RVs over the

same probability space.
They are not necessarily independent. Then:

O EXi+...+X] =E[X]+... +E[X]
@ For constant ¢, [E[cX] = c-E[X]

Proof: Notes. Out of scope, but not a hard proof.

Meye formally go through it next lecture.
Provobly

Linearity: Example |

X=1|X=2|X=3

0.2 0.2 0.1
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3| 0.1 0 0.3
4 0 0.1 0

From previous: E[X] = 2.1, E[Y] = 2.6.

EBX +7Y] = E[(3x T+ ELT7Y]
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Expectation of a Binomial

Let Xi, ..., X, be i.i.d. Bernoulli(p) RVs.
Let X = Xq +...+ X,

Linearity: Example Il

| draw two cards from a standard deck.
What is the expected number of aces | get?

Linearity: Example Il

Attempt #2: Use linearity of expectation.
G = Wndutator variable for card L= Ace.
u
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A Note on Symmetry Linearity: Mixing Up HW Summary

C; = indicator for the j-th card being an ace.

P[C = 1] = —}—é

Now, imagine | draw the entire deck.

E[C1+C2+...+C52]=4—
¥ OF acen I qet

=4, always
Using this, for any /, what is E[C]?
~
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(From notes.)
Same HW setup as before with n students.

ani s nk
S; = indicator variable for student ¢ QW
Yok € owWn HW.
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» Joint distribution: multiple RVs. Can still be
defined for non-independent RVs.

» Ideas of independence, conditional probability
same as before.

» Expectation describes the weighted
average of a RV.

» For more complicated RVs, break down into
smaller parts (e.g. indicator variables) and
use linearity




