Lecture 2: Proofs No, not the alcohol kind

Introduction to Proofs

What are proofs?

- Sequence of logical deductions
- Deduce new claims from already known
- Mix of English and mathematical notation

Why proofs?

- Formal way to determine if something is true (or false by proving the negation)
 - Informal methods can be misleading!
- Collect thoughts into a crisp, clear argument
- Convince others that something is true

Today: general proof techniques + examples

Direct Proof

Many theorems take the form $P \Longrightarrow Q$

• eg, "*n* is even $\implies n^2$ is even"

Direct proofs do exactly what you would expect: suppose P is true¹ and deduce that Q is also true.

 $^{^{1}}$ if P is not true, the implication holds vacuously!

Direct Proof Example

Theorem: If a|b ("a divides b") and a|c, a|(b+c)

Proof:

- ▶ Suppose a|b and a|c
- ▶ $b = aq_1$ and $c = aq_2$ for some $q_1, q_2 \in \mathbb{Z}$
- Hence $b + c = aq_1 + aq_2 = a(q_1 + q_2)$
- ▶ Since $q_1 + q_2 \in \mathbb{Z}$, a|(b+c)

Proof does not specify what values a, b, and c take on — proves the statement for all a, b, and c!

Similar method to show $a|(b-c)^2$

²In fact, a|(xb+yc) for all integers x and y!

Direct Proof Example 2

Theorem: Let n be a 3-digit natural number. n is divisible by 9 if and only if the sum of its digits is.

Let n = 100a + 10b + c**Proof**(if):

- Suppose 9|(a+b+c), so a+b+c=9k
- ► Then n = 100a + 10b + c = 9k + 99a + 9b
- Hence n = 9(k + 11a + b), so 9|n|

Proof(only if):

- Suppose 9|n, so n = 100a + 10b + c = 9j
- ▶ Then a + b + c = 9j 99a 9b
- ► Hence a + b + c = 9(j 11a b) so 9|(a + b + c)

Proof by Contraposition

Recall:
$$P \implies Q \equiv (\neg Q) \implies (\neg P)$$

Proving the contrapositive may be easier!

- $ightharpoonup \neg Q$ might give more information than P
- ▶ $\neg P$ might be easier to get to than Q

Proof by contraposition is just a direct proof of the contrapositive.

Proof by Contraposition Example

Theorem: Let $n \in \mathbb{N}$. If n^2 is even, n is even.

Try proving it directly:

- ▶ Since n^2 is even, $n^2 = 2k$ for some integer k
- ▶ Then $n = \sqrt{2k}$, so ...

Issue: not enough information to get anywhere :(

Try contrapositive instead: if n is odd, n^2 is odd

- ▶ Suppose *n* is odd, so n = 2k + 1
- ► Then $n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$
- ▶ Thus n^2 is odd

Proof by Contraposition Example 2

Theorem: Let $x \in \mathbb{R}$. If $x \le y$ for all y > 0, $x \le 0$.

Direct proof? O no...

Contrapositive: if x > 0, $\exists y > 0$ such that x > y

- ▶ Take $y = \frac{x}{2}$
- Since x > 0, $x > \frac{x}{2} > 0$

Sometimes called a "proof by example" (or a "proof by counterexample" for disproving a "for all")

Proof by Contraposition Example 3

Theorem: Suppose we place n items into k boxes. If n > k, at least one box has more than one item.³

Direct proof possible, but messy.

Contrapositive: If all boxes have ≤ 1 item, $n \leq k$.

- Let n_i be the number of items in box i
- ▶ Suppose that $n_i \le 1$ for all i
- ▶ Then $n = n_1 + ... + n_k \le 1 + ... + 1 = k$

³This is called the pigeonhole principle

Proof by Contradiction

Idea: show that P being false is nonsensical

Formally: show that $\neg P$ implies something false⁴

Why does this work?

Contrapositive of $(\neg P) \implies \text{False}$ is True $\implies P$

Intuition: $(\neg P) \implies$ False, so $\neg P$ can't be true.

But if $\neg P$ is false, P is true by definition!

⁴This is known as "reductio ad absurdum" if you want to sound fancy.

Contradiction Example

Theorem: There are infinitely many primes.

How to construct infinitely many primes? idk... No implication for contraposition either

Contradiction proof:

- ▶ Suppose only finitely many: $p_1, p_2, ..., p_k$
- ▶ Consider $q := (p_1 \cdot p_2 \cdot ... \cdot p_k) + 1$
- q can't be a multiple of p_1 , or p_2 , or ..., or p_k
- So q has no prime factors
- Next time: every number has a prime factor
- Contradiction! Must be infinitely many primes

Contradiction Example 2

Theorem: $\sqrt{2}$ is irrational.

Generally difficult to prove negative results directly Again, no implication to use in contraposition

Contradiction proof:

- ▶ Suppose $\sqrt{2}$ is rational
- Write it in lowest terms as $\frac{a}{b}$
- Since $\frac{a}{b} = \sqrt{2}$, $a^2 = 2b^2$
- a^2 even, so a = 2k
- ▶ Hence $b^2 = 2k^2$, so b^2 and b even
- ▶ a and b both even, so $\frac{a}{b}$ not in lowest terms!
- ► Contradiction! $\sqrt{2}$ must be irrational

Break Time!

Whew, time for a 4 minute break.

Today's discussion question:

Which is the one true kind of peanut butter: chunky or smooth?

Proof by Cases

Idea: one of these cases happens, but which one? Prove the claim in each case.

Why does this work? Consider two cases C_1 and C_2 . If $C_1 \Longrightarrow P$ and $C_2 \Longrightarrow P$, then $(C_1 \lor C_2) \Longrightarrow P!$

Proof by Cases Example

Theorem: There exist irrational numbers x and y such that x^y is rational.

- **Case 1**: $\sqrt{2}^{\sqrt{2}}$ is rational
 - ▶ Immediately done: take $x = y = \sqrt{2}$

Case 2: $\sqrt{2}^{\sqrt{2}}$ is irrational

- Take $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$
- ► Then $x^y = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^{\sqrt{2} \cdot \sqrt{2}} = \sqrt{2}^2 = 2$

But which case?

Doesn't matter, but is case 2.

Proof by Cases Example 2

Theorem: Let $x, y \in \mathbb{R}$. Then $|x + y| \le |x| + |y|$.

Case 1: $x \ge 0$, $y \ge 0$

x + y > 0, so |x + y| = x + y = |x| + |y|

Case 2: $x \ge 0$, y < 0

- If $|x| \ge |y|$, $|x + y| = |x| |y| \le |x| + |y|$
- ► Else $|x + y| = |y| |x| \le |y| + |x| = |x| + |y|$

Case 3: x < 0, $y \ge 0$

Switch x and y to get case 2!

Case 4: x < 0, y < 0

Negate x and y to get case 1!

⁵This is known as the *triangle inequality*.

Error 404: Proof Not Found

Be careful when writing proofs! Very easy to miss small errors that break everything :(

Consider the following "proof":

Claim: -2 = 2 **"Proof"**

- ▶ Suppose -2 = 2
- Square both sides to get 4 = 4
- ▶ This is true, so we must have that -2 = 2

Tried to use $P \Longrightarrow \text{True to conclude } P$. But this implication holds even if P is false!⁶

⁶In fact, if you start with a false assumption, you can prove anything. This is known as the *Principle of Explosion*.

Other Common Errors

```
Claim: 1 = 2 "Proof":
```

- ▶ Let x and y be integers such that x = y
- Then $x^2 xy = x^2 y^2$
- ▶ Divide by x y to get x = x + y
- ▶ Take x = y = 1 to get 1 = 2

Issue: x = y, so x - y = 0. Divided by zero!

```
Claim: 4 \le 1 "Proof":
```

- ▶ We know that $-2 \le 1$
- Square both sides to get $4 \le 1$

Issue: squaring multiplied by -2 — flips inequality!

Tips for Proofs

Proof-writing is a skill, and can be difficult. Here are some tips on how to write your own:

- Use full English sentences for clarity.
 - Proofs should be clear enough to convince a skeptical classmate
- Use lemmas to break up a long proof.
- Develop your style through practice.
- Read other's proofs to see their style.

Fin

Next time: induction!