Lecture 2: Proofs No, not the alcohol kind

Introduction to Proofs

What are proofs?

- Sequence of logical deductions
- Deduce new claims from already known
- Mix of English and mathematical notation

Introduction to Proofs

What are proofs?

- Sequence of logical deductions
- Deduce new claims from already known
- Mix of English and mathematical notation

Why proofs?

- Formal way to determine if something is true (or false by proving the negation)
 - Informal methods can be misleading!
- Collect thoughts into a crisp, clear argument
- Convince others that something is true

Introduction to Proofs

What are proofs?

- Sequence of logical deductions
- Deduce new claims from already known
- Mix of English and mathematical notation

Why proofs?

- Formal way to determine if something is true (or false by proving the negation)
 - Informal methods can be misleading!
- Collect thoughts into a crisp, clear argument
- Convince others that something is true

Today: general proof techniques + examples

Direct Proof

Many theorems take the form $P \implies Q$

• eg, "*n* is even $\implies n^2$ is even"

Direct proofs do exactly what you would expect: suppose P is true¹ and deduce that Q is also true.

¹ if P is not true, the implication holds vacuously!

Theorem: If a|b ("a divides b") and a|c, a|(b+c)

Theorem: If a|b ("a divides b") and a|c, a|(b+c)**Proof**:

- ► Suppose *a*|*b* and *a*|*c*
- $b = aq_1$ and $c = aq_2$ for some $q_1, q_2 \in \mathbb{Z}$

Theorem: If a|b ("a divides b") and a|c, a|(b+c)**Proof**:

- ► Suppose *a*|*b* and *a*|*c*
- $b = aq_1$ and $c = aq_2$ for some $q_1, q_2 \in \mathbb{Z}$
- Hence $b + c = aq_1 + aq_2 = a(q_1 + q_2)$

Theorem: If a|b ("a divides b") and a|c, a|(b+c)**Proof**:

- ► Suppose *a*|*b* and *a*|*c*
- $b = aq_1$ and $c = aq_2$ for some $q_1, q_2 \in \mathbb{Z}$
- Hence $b + c = aq_1 + aq_2 = a(q_1 + q_2)$
- Since $q_1 + q_2 \in \mathbb{Z}$, a|(b + c)|

Theorem: If a|b ("a divides b") and a|c, a|(b+c)**Proof**:

- ► Suppose *a*|*b* and *a*|*c*
- $b = aq_1$ and $c = aq_2$ for some $q_1, q_2 \in \mathbb{Z}$
- Hence $b + c = aq_1 + aq_2 = a(q_1 + q_2)$
- Since $q_1 + q_2 \in \mathbb{Z}$, a|(b + c)

Proof does not specify what values a, b, and c take on — proves the statement for all a, b, and c!

²In fact, a|(xb + yc) for all integers x and y!

Theorem: If a|b ("a divides b") and a|c, a|(b+c)**Proof**:

- ► Suppose *a*|*b* and *a*|*c*
- $b = aq_1$ and $c = aq_2$ for some $q_1, q_2 \in \mathbb{Z}$
- Hence $b + c = aq_1 + aq_2 = a(q_1 + q_2)$
- Since $q_1 + q_2 \in \mathbb{Z}$, a|(b + c)

Proof does not specify what values a, b, and c take on — proves the statement for all a, b, and c!

Similar method to show $a|(b-c)^2$

Theorem: Let *n* be a 3-digit natural number. *n* is divisible by 9 if and only if the sum of its digits is.

Theorem: Let *n* be a 3-digit natural number. *n* is divisible by 9 if and only if the sum of its digits is.

Let n = 100a + 10b + c

Theorem: Let *n* be a 3-digit natural number. *n* is divisible by 9 if and only if the sum of its digits is.

```
Let n = 100a + 10b + c
Proof(if):
```

Suppose 9|(a+b+c), so a+b+c=9k

Theorem: Let *n* be a 3-digit natural number. *n* is divisible by 9 if and only if the sum of its digits is.

```
Let n = 100a + 10b + c
Proof(if):
```

- Suppose 9|(a+b+c), so a+b+c=9k
- Then n = 100a + 10b + c = 9k + 99a + 9b

Theorem: Let *n* be a 3-digit natural number. *n* is divisible by 9 if and only if the sum of its digits is.

Let n = 100a + 10b + c**Proof**(if):

- Suppose 9|(a+b+c), so a+b+c=9k
- Then n = 100a + 10b + c = 9k + 99a + 9b
- Hence n = 9(k + 11a + b), so 9|n|

Theorem: Let *n* be a 3-digit natural number. *n* is divisible by 9 if and only if the sum of its digits is.

Let n = 100a + 10b + c**Proof**(if):

- Suppose 9|(a + b + c), so a + b + c = 9k
- Then n = 100a + 10b + c = 9k + 99a + 9b
- Hence n = 9(k + 11a + b), so 9|n|

Proof(only if):

• Suppose 9|n, so n = 100a + 10b + c = 9j

Theorem: Let *n* be a 3-digit natural number. *n* is divisible by 9 if and only if the sum of its digits is.

Let n = 100a + 10b + c**Proof**(if):

- Suppose 9|(a + b + c), so a + b + c = 9k
- Then n = 100a + 10b + c = 9k + 99a + 9b
- Hence n = 9(k + 11a + b), so 9|n|

Proof(only if):

- Suppose 9|n, so n = 100a + 10b + c = 9j
- Then a + b + c = 9j 99a 9b

Theorem: Let n be a 3-digit natural number. n is divisible by 9 if and only if the sum of its digits is.

Let n = 100a + 10b + c**Proof**(if):

- Suppose 9|(a + b + c), so a + b + c = 9k
- Then n = 100a + 10b + c = 9k + 99a + 9b
- Hence n = 9(k + 11a + b), so 9|n|

Proof(only if):

- Suppose 9|n, so n = 100a + 10b + c = 9j
- Then a + b + c = 9j 99a 9b
- ► Hence a + b + c = 9(j 11a b) so 9|(a + b + c)

Proof by Contraposition Recall: $P \implies Q \equiv (\neg Q) \implies (\neg P)$

Proof by Contraposition

Recall: $P \implies Q \equiv (\neg Q) \implies (\neg P)$

Proving the contrapositive may be easier!

- $\neg Q$ might give more information than P
- $\neg P$ might be easier to get to than Q

Proof by Contraposition

Recall:
$$P \implies Q \equiv (\neg Q) \implies (\neg P)$$

Proving the contrapositive may be easier!

- $\neg Q$ might give more information than P
- $\neg P$ might be easier to get to than Q

Proof by contraposition is just a direct proof of the contrapositive.

Proof by Contraposition Example Theorem: Let $n \in \mathbb{N}$. If n^2 is even, n is even.

Proof by Contraposition Example Theorem: Let $n \in \mathbb{N}$. If n^2 is even, n is even.

Try proving it directly:

Since n^2 is even, $n^2 = 2k$ for some integer k

Theorem: Let $n \in \mathbb{N}$. If n^2 is even, n is even.

Try proving it directly:

Since n^2 is even, $n^2 = 2k$ for some integer k

• Then
$$n = \sqrt{2k}$$
, so ...

Theorem: Let $n \in \mathbb{N}$. If n^2 is even, n is even.

Try proving it directly:

Since n^2 is even, $n^2 = 2k$ for some integer k

• Then
$$n = \sqrt{2k}$$
, so ...

Issue: not enough information to get anywhere :(

Theorem: Let $n \in \mathbb{N}$. If n^2 is even, n is even.

Try proving it directly:

• Since n^2 is even, $n^2 = 2k$ for some integer k

• Then
$$n = \sqrt{2k}$$
, so ...

Issue: not enough information to get anywhere :(

Try contrapositive instead: if n is odd, n^2 is odd

Theorem: Let $n \in \mathbb{N}$. If n^2 is even, n is even.

Try proving it directly:

• Since n^2 is even, $n^2 = 2k$ for some integer k

• Then
$$n = \sqrt{2k}$$
, so ...

Issue: not enough information to get anywhere :(

Try contrapositive instead: if n is odd, n^2 is odd

Suppose *n* is odd, so n = 2k + 1

Theorem: Let $n \in \mathbb{N}$. If n^2 is even, n is even.

Try proving it directly:

• Since n^2 is even, $n^2 = 2k$ for some integer k

• Then
$$n = \sqrt{2k}$$
, so ...

Issue: not enough information to get anywhere :(

Try contrapositive instead: if n is odd, n^2 is odd

- Suppose *n* is odd, so n = 2k + 1
- Then $n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$

Theorem: Let $n \in \mathbb{N}$. If n^2 is even, n is even.

Try proving it directly:

• Since n^2 is even, $n^2 = 2k$ for some integer k

• Then
$$n = \sqrt{2k}$$
, so ...

Issue: not enough information to get anywhere :(

Try contrapositive instead: if n is odd, n^2 is odd

- Suppose *n* is odd, so n = 2k + 1
- Then $n^2 = 4k^2 + 4k + 1 = 2(2k^2 + 2k) + 1$
- Thus n² is odd

Proof by Contraposition Example 2 Theorem: Let $x \in \mathbb{R}$. If $x \le y$ for all $y > 0, x \le 0$.

Proof by Contraposition Example 2 Theorem: Let $x \in \mathbb{R}$. If $x \le y$ for all $y > 0, x \le 0$. Direct proof? Proof by Contraposition Example 2 Theorem: Let $x \in \mathbb{R}$. If $x \le y$ for all y > 0, $x \le 0$. Direct proof? O no... Proof by Contraposition Example 2 Theorem: Let $x \in \mathbb{R}$. If $x \le y$ for all y > 0, $x \le 0$. Direct proof? O no...

Contrapositive: if x > 0, $\exists y > 0$ such that x > y

- Proof by Contraposition Example 2 Theorem: Let $x \in \mathbb{R}$. If $x \le y$ for all y > 0, $x \le 0$. Direct proof? O no...
 - Contrapositive: if x > 0, $\exists y > 0$ such that x > y

• Take
$$y = \frac{x}{2}$$

• Since
$$x > 0$$
, $x > \frac{x}{2} > 0$

Proof by Contraposition Example 2 Theorem: Let $x \in \mathbb{R}$. If $x \le y$ for all y > 0, $x \le 0$. Direct proof? O no...

Contrapositive: if x > 0, $\exists y > 0$ such that x > y

• Take
$$y = \frac{x}{2}$$

• Since
$$x > 0$$
, $x > \frac{x}{2} > 0$

Sometimes called a "proof by example" (or a "proof by counterexample" for disproving a "for all")
Theorem: Suppose we place *n* items into *k* boxes. If n > k, at least one box has more than one item.³

³This is called the pigeonhole principle

Theorem: Suppose we place *n* items into *k* boxes. If n > k, at least one box has more than one item.³

Direct proof possible, but messy.

³This is called the pigeonhole principle

Theorem: Suppose we place *n* items into *k* boxes. If n > k, at least one box has more than one item.³

Direct proof possible, but messy.

Contrapositive: If all boxes have ≤ 1 item, $n \leq k$.

³This is called the pigeonhole principle

Theorem: Suppose we place *n* items into *k* boxes. If n > k, at least one box has more than one item.³

Direct proof possible, but messy.

Contrapositive: If all boxes have ≤ 1 item, $n \leq k$.

• Let n_i be the number of items in box i

³This is called the pigeonhole principle

Theorem: Suppose we place *n* items into *k* boxes. If n > k, at least one box has more than one item.³

Direct proof possible, but messy.

Contrapositive: If all boxes have ≤ 1 item, $n \leq k$.

- ▶ Let *n_i* be the number of items in box *i*
- Suppose that $n_i \leq 1$ for all i

³This is called the pigeonhole principle

Theorem: Suppose we place *n* items into *k* boxes. If n > k, at least one box has more than one item.³

Direct proof possible, but messy.

Contrapositive: If all boxes have ≤ 1 item, $n \leq k$.

- ▶ Let *n_i* be the number of items in box *i*
- Suppose that $n_i \leq 1$ for all i
- Then $n = n_1 + ... + n_k \le 1 + ... + 1 = k$

³This is called the pigeonhole principle

Proof by Contradiction

Idea: show that P being false is nonsensical

Formally: show that $\neg P$ implies something false⁴

⁴This is known as "reductio ad absurdum" if you want to sound fancy.

Proof by Contradiction

Idea: show that P being false is nonsensical

Formally: show that $\neg P$ implies something false⁴

Why does this work?

⁴This is known as "reductio ad absurdum" if you want to sound fancy.

Proof by Contradiction

- Idea: show that P being false is nonsensical
- Formally: show that $\neg P$ implies something false⁴
- Why does this work?
- Contrapositive of $(\neg P) \implies$ False is True $\implies P$
- Intuition: $(\neg P) \implies$ False, so $\neg P$ can't be true. But if $\neg P$ is false, P is true by definition!

⁴This is known as "reductio ad absurdum" if you want to sound fancy.

Theorem: There are infinitely many primes.

Theorem: There are infinitely many primes.

How to construct infinitely many primes?

Theorem: There are infinitely many primes.

How to construct infinitely many primes? idk...

Theorem: There are infinitely many primes.

How to construct infinitely many primes? idk... No implication for contraposition either

Theorem: There are infinitely many primes.

How to construct infinitely many primes? idk... No implication for contraposition either

- ▶ Suppose only finitely many: *p*₁, *p*₂, ..., *p*_k
- Consider $q := (p_1 \cdot p_2 \cdot ... \cdot p_k) + 1$

Theorem: There are infinitely many primes.

How to construct infinitely many primes? idk... No implication for contraposition either

- ▶ Suppose only finitely many: *p*₁, *p*₂, ..., *p*_k
- Consider $q := (p_1 \cdot p_2 \cdot ... \cdot p_k) + 1$
- q can't be a multiple of p_1 , or p_2 , or ..., or p_k

Theorem: There are infinitely many primes.

How to construct infinitely many primes? idk... No implication for contraposition either

- ▶ Suppose only finitely many: *p*₁, *p*₂, ..., *p*_k
- Consider $q := (p_1 \cdot p_2 \cdot ... \cdot p_k) + 1$
- q can't be a multiple of p_1 , or p_2 , or ..., or p_k
- ▶ So *q* has no prime factors
- Next time: every number has a prime factor

Theorem: There are infinitely many primes.

How to construct infinitely many primes? idk... No implication for contraposition either

- ▶ Suppose only finitely many: *p*₁, *p*₂, ..., *p*_k
- Consider $q := (p_1 \cdot p_2 \cdot ... \cdot p_k) + 1$
- q can't be a multiple of p_1 , or p_2 , or ..., or p_k
- ▶ So *q* has no prime factors
- Next time: every number has a prime factor
- Contradiction! Must be infinitely many primes

Contradiction Example 2 Theorem: $\sqrt{2}$ is irrational.

Theorem: $\sqrt{2}$ is irrational.

Generally difficult to prove negative results directly Again, no implication to use in contraposition

Theorem: $\sqrt{2}$ is irrational.

Generally difficult to prove negative results directly Again, no implication to use in contraposition

- Suppose $\sqrt{2}$ is rational
- Write it in lowest terms as $\frac{a}{b}$

Theorem: $\sqrt{2}$ is irrational.

Generally difficult to prove negative results directly Again, no implication to use in contraposition

- Suppose $\sqrt{2}$ is rational
- Write it in lowest terms as $\frac{a}{b}$

• Since
$$\frac{a}{b} = \sqrt{2}$$
, $a^2 = 2b^2$

•
$$a^2$$
 even, so $a = 2k$

Theorem: $\sqrt{2}$ is irrational.

Generally difficult to prove negative results directly Again, no implication to use in contraposition

Contradiction proof:

- Suppose $\sqrt{2}$ is rational
- Write it in lowest terms as $\frac{a}{b}$

• Since
$$\frac{a}{b} = \sqrt{2}$$
, $a^2 = 2b^2$

•
$$a^2$$
 even, so $a = 2k$

• Hence $b^2 = 2k^2$, so b^2 and b even

Theorem: $\sqrt{2}$ is irrational.

Generally difficult to prove negative results directly Again, no implication to use in contraposition

Contradiction proof:

- Suppose $\sqrt{2}$ is rational
- Write it in lowest terms as $\frac{a}{b}$

• Since
$$\frac{a}{b} = \sqrt{2}$$
, $a^2 = 2b^2$

•
$$a^2$$
 even, so $a = 2k$

• Hence $b^2 = 2k^2$, so b^2 and b even

- a and b both even, so $\frac{a}{b}$ not in lowest terms!
- Contradiction! $\sqrt{2}$ must be irrational

Break Time!

Whew, time for a 4 minute break.

Break Time!

Whew, time for a 4 minute break.

Today's discussion question:

Which is the one true kind of peanut butter: chunky or smooth?

Proof by Cases

Idea: one of these cases happens, but which one? Prove the claim in each case.

Proof by Cases

Idea: one of these cases happens, but which one? Prove the claim in each case.

Why does this work? Consider two cases C_1 and C_2 . If $C_1 \implies P$ and $C_2 \implies P$, then $(C_1 \lor C_2) \implies P!$

Theorem: There exist irrational numbers x and y such that x^y is rational.

Theorem: There exist irrational numbers x and y such that x^y is rational.

Case 1: $\sqrt{2}^{\sqrt{2}}$ is rational

• Immediately done: take $x = y = \sqrt{2}$

Theorem: There exist irrational numbers x and y such that x^y is rational.

Case 1: $\sqrt{2}^{\sqrt{2}}$ is rational

• Immediately done: take $x = y = \sqrt{2}$

Case 2:
$$\sqrt{2}^{\sqrt{2}}$$
 is irrational
• Take $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$
• Then $x^{y} = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^{\sqrt{2} \cdot \sqrt{2}} = \sqrt{2}^{2} = 2$

Theorem: There exist irrational numbers x and y such that x^y is rational.

Case 1: $\sqrt{2}^{\sqrt{2}}$ is rational

• Immediately done: take $x = y = \sqrt{2}$

Case 2:
$$\sqrt{2}^{\sqrt{2}}$$
 is irrational
• Take $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$
• Then $x^{y} = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^{\sqrt{2} \cdot \sqrt{2}} = \sqrt{2}^{2} = 2$

But which case?

Theorem: There exist irrational numbers x and y such that x^y is rational.

Case 1: $\sqrt{2}^{\sqrt{2}}$ is rational

• Immediately done: take $x = y = \sqrt{2}$

Case 2:
$$\sqrt{2}^{\sqrt{2}}$$
 is irrational
• Take $x = \sqrt{2}^{\sqrt{2}}$, $y = \sqrt{2}$
• Then $x^y = (\sqrt{2}^{\sqrt{2}})^{\sqrt{2}} = \sqrt{2}^{\sqrt{2} \cdot \sqrt{2}} = \sqrt{2}^2 = 2$

But which case? Doesn't matter, but is case 2.

Theorem: Let $x, y \in \mathbb{R}$. Then $|x + y| \le |x| + |y|$.⁵

⁵This is known as the *triangle inequality*.

Proof by Cases Example 2 Theorem: Let $x, y \in \mathbb{R}$. Then $|x + y| \le |x| + |y|$.⁵ Case 1: $x \ge 0, y \ge 0$ x + y > 0, so |x + y| = x + y = |x| + |y|

⁵This is known as the *triangle inequality*.

Proof by Cases Example 2 **Theorem**: Let $x, y \in \mathbb{R}$. Then $|x + y| \leq |x| + |y|$.⁵ **Case 1**: x > 0, y > 0• x + y > 0, so |x + y| = x + y = |x| + |y|**Case 2**: x > 0, y < 0• If |x| > |y|, |x + y| = |x| - |y| < |x| + |y|• Else |x + y| = |y| - |x| < |y| + |x| = |x| + |y|

⁵This is known as the *triangle inequality*.

Proof by Cases Example 2 **Theorem**: Let $x, y \in \mathbb{R}$. Then |x + y| < |x| + |y|.⁵ **Case 1**: x > 0, y > 0• x + y > 0, so |x + y| = x + y = |x| + |y|**Case 2**: x > 0, y < 0• If |x| > |y|, |x + y| = |x| - |y| < |x| + |y|• Else $|x + y| = |y| - |x| \le |y| + |x| = |x| + |y|$ **Case 3**: x < 0, y > 0

Switch x and y to get case 2!

⁵This is known as the *triangle inequality*.
Proof by Cases Example 2 **Theorem**: Let $x, y \in \mathbb{R}$. Then $|x + y| \leq |x| + |y|$.⁵ **Case 1**: x > 0, y > 0• x + y > 0, so |x + y| = x + y = |x| + |y|**Case 2**: x > 0, y < 0• If |x| > |y|, |x + y| = |x| - |y| < |x| + |y|• Else |x + y| = |y| - |x| < |y| + |x| = |x| + |y|**Case 3**: x < 0, y > 0Switch x and y to get case 2! **Case 4**: x < 0, y < 0

Negate x and y to get case 1!

⁵This is known as the *triangle inequality*.

Error 404: Proof Not Found

Be careful when writing proofs! Very easy to miss small errors that break everything :(

⁶In fact, if you start with a false assumption, you can prove anything. This is known as the *Principle of Explosion*.

Error 404: Proof Not Found

Be careful when writing proofs! Very easy to miss small errors that break everything :(

Consider the following "proof": Claim: -2 = 2"Proof":

- Suppose -2 = 2
- Square both sides to get 4 = 4
- This is true, so we must have that -2 = 2

⁶In fact, if you start with a false assumption, you can prove anything. This is known as the *Principle of Explosion*.

Error 404: Proof Not Found

Be careful when writing proofs! Very easy to miss small errors that break everything :(

Consider the following "proof": Claim: -2 = 2"Proof":

- Suppose -2 = 2
- Square both sides to get 4 = 4
- This is true, so we must have that -2 = 2

Tried to use $P \implies$ True to conclude P. But this implication holds even if P is false!⁶

⁶In fact, if you start with a false assumption, you can prove anything. This is known as the *Principle of Explosion*.

Claim: 1 = 2 **"Proof"**:

• Let x and y be integers such that x = y

• Then
$$x^2 - xy = x^2 - y^2$$

• Divide by x - y to get x = x + y

• Take
$$x = y = 1$$
 to get $1 = 2$

Claim: 1 = 2 **"Proof"**:

Let x and y be integers such that x = y
Then x² - xy = x² - y²
Divide by x - y to get x = x + y
Take x = y = 1 to get 1 = 2

Issue: x = y, so x - y = 0. Divided by zero!

Claim: 1 = 2 **"Proof"**:

Let x and y be integers such that x = y
Then x² - xy = x² - y²
Divide by x - y to get x = x + y
Take x = y = 1 to get 1 = 2
Issue: x = y, so x - y = 0. Divided by zero!

Claim: $4 \le 1$ "Proof":

- We know that $-2 \leq 1$
- Square both sides to get 4 \leq 1

Claim: 1 = 2 **"Proof"**:

Let x and y be integers such that x = y
Then x² - xy = x² - y²
Divide by x - y to get x = x + y
Take x = y = 1 to get 1 = 2
Issue: x = y, so x - y = 0. Divided by zero!

Claim: $4 \le 1$ "Proof":

- We know that $-2 \leq 1$
- Square both sides to get 4 \leq 1

Issue: squaring multiplied by -2 — flips inequality!

Tips for Proofs

Proof-writing is a skill, and can be difficult. Here are some tips on how to write your own:

- ► Use full English sentences for clarity.
 - Proofs should be clear enough to convince a skeptical classmate
- Use lemmas to break up a long proof.
- Develop your style through practice.
- ▶ Read other's proofs to see their style.

Next time: induction!