
Lecture 2: Proofs
No, not the alcohol kind
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Introduction to Proofs
What are proofs?

▶ Sequence of logical deductions
▶ Deduce new claims from already known
▶ Mix of English and mathematical notation

Why proofs?
▶ Formal way to determine if something is true

(or false by proving the negation)
▶ Informal methods can be misleading!

▶ Collect thoughts into a crisp, clear argument
▶ Convince others that something is true

Today: general proof techniques + examples
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Direct Proof
Many theorems take the form P =⇒ Q

▶ eg, “n is even =⇒ n2 is even”

Direct proofs do exactly what you would expect:
suppose P is true1 and deduce that Q is also true.

1if P is not true, the implication holds vacuously!
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Direct Proof Example
Theorem: If a|b (“a divides b”) and a|c, a|(b + c)

Proof:
▶ Suppose a|b and a|c
▶ b = aq1 and c = aq2 for some q1, q2 ∈ Z
▶ Hence b + c = aq1 + aq2 = a(q1 + q2)

▶ Since q1 + q2 ∈ Z, a|(b + c)

Proof does not specify what values a, b, and c take
on — proves the statement for all a, b, and c!
Similar method to show a|(b − c)2

2In fact, a|(xb + yc) for all integers x and y!
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Direct Proof Example 2
Theorem: Let n be a 3-digit natural number. n is
divisible by 9 if and only if the sum of its digits is.

Let n = 100a + 10b + c
Proof(if):

▶ Suppose 9|(a + b + c), so a + b + c = 9k
▶ Then n = 100a + 10b + c = 9k + 99a + 9b
▶ Hence n = 9(k + 11a + b), so 9|n

Proof(only if):
▶ Suppose 9|n, so n = 100a + 10b + c = 9j
▶ Then a + b + c = 9j − 99a − 9b
▶ Hence a + b + c = 9(j − 11a − b) so

9|(a + b + c)
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Proof by Contraposition
Recall: P =⇒ Q ≡ (¬Q) =⇒ (¬P)

Proving the contrapositive may be easier!
▶ ¬Q might give more information than P
▶ ¬P might be easier to get to than Q

Proof by contraposition is just a direct proof of the
contrapositive.
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Proof by Contraposition Example
Theorem: Let n ∈ N. If n2 is even, n is even.

Try proving it directly:
▶ Since n2 is even, n2 = 2k for some integer k
▶ Then n =

√
2k, so ...

Issue: not enough information to get anywhere :(
Try contrapositive instead: if n is odd, n2 is odd

▶ Suppose n is odd, so n = 2k + 1
▶ Then n2 = 4k2 + 4k + 1 = 2(2k2 + 2k) + 1
▶ Thus n2 is odd
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Proof by Contraposition Example 2
Theorem: Let x ∈ R. If x ≤ y for all y > 0, x ≤ 0.

Direct proof? O no...
Contrapositive: if x > 0, ∃y > 0 such that x > y

▶ Take y = x
2

▶ Since x > 0, x > x
2 > 0

Sometimes called a “proof by example” (or a “proof
by counterexample” for disproving a “for all”)
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Proof by Contraposition Example 3
Theorem: Suppose we place n items into k boxes.
If n > k, at least one box has more than one item.3

Direct proof possible, but messy.
Contrapositive: If all boxes have ≤ 1 item, n ≤ k.

▶ Let ni be the number of items in box i
▶ Suppose that ni ≤ 1 for all i
▶ Then n = n1 + ...+ nk ≤ 1 + ...+ 1 = k

3This is called the pigeonhole principle
9 / 20
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Proof by Contradiction
Idea: show that P being false is nonsensical
Formally: show that ¬P implies something false4

Why does this work?
Contrapositive of (¬P) =⇒ False is True =⇒ P
Intuition: (¬P) =⇒ False, so ¬P can’t be true.
But if ¬P is false, P is true by definition!

4This is known as “reductio ad absurdum” if you want to sound fancy.
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Contradiction Example
Theorem: There are infinitely many primes.

How to construct infinitely many primes? idk...
No implication for contraposition either
Contradiction proof:

▶ Suppose only finitely many: p1, p2, ..., pk
▶ Consider q := (p1 · p2 · ... · pk) + 1
▶ q can’t be a multiple of p1, or p2, or ..., or pk
▶ So q has no prime factors
▶ Next time: every number has a prime factor
▶ Contradiction! Must be infinitely many primes
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Contradiction Example 2
Theorem:

√
2 is irrational.

Generally difficult to prove negative results directly
Again, no implication to use in contraposition
Contradiction proof:

▶ Suppose
√

2 is rational
▶ Write it in lowest terms as a

b
▶ Since a

b =
√

2, a2 = 2b2

▶ a2 even, so a = 2k
▶ Hence b2 = 2k2, so b2 and b even
▶ a and b both even, so a

b not in lowest terms!
▶ Contradiction!

√
2 must be irrational
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Break Time!
Whew, time for a 4 minute break.

Today’s discussion question:
Which is the one true kind of peanut butter: chunky
or smooth?
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Proof by Cases
Idea: one of these cases happens, but which one?
Prove the claim in each case.

Why does this work?
Consider two cases C1 and C2. If C1 =⇒ P and
C2 =⇒ P, then (C1 ∨ C2) =⇒ P!
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Proof by Cases Example
Theorem: There exist irrational numbers x and y
such that xy is rational.

Case 1:
√

2
√

2 is rational
▶ Immediately done: take x = y =

√
2

Case 2:
√

2
√

2 is irrational
▶ Take x =

√
2
√

2, y =
√

2
▶ Then xy = (

√
2
√

2
)
√

2 =
√

2
√

2·
√

2
=

√
22

= 2

But which case?
Doesn’t matter, but is case 2.
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Proof by Cases Example 2
Theorem: Let x, y ∈ R. Then |x + y| ≤ |x|+ |y|.5

Case 1: x ≥ 0, y ≥ 0
▶ x + y > 0, so |x + y| = x + y = |x|+ |y|

Case 2: x ≥ 0, y < 0
▶ If |x| ≥ |y|, |x + y| = |x| − |y| ≤ |x|+ |y|
▶ Else |x + y| = |y| − |x| ≤ |y|+ |x| = |x|+ |y|

Case 3: x < 0, y ≥ 0
▶ Switch x and y to get case 2!

Case 4: x < 0, y < 0
▶ Negate x and y to get case 1!

5This is known as the triangle inequality.
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Error 404: Proof Not Found
Be careful when writing proofs! Very easy to miss
small errors that break everything :(

Consider the following “proof”:
Claim: −2 = 2
“Proof”:

▶ Suppose −2 = 2
▶ Square both sides to get 4 = 4
▶ This is true, so we must have that −2 = 2

Tried to use P =⇒ True to conclude P.
But this implication holds even if P is false!6

6In fact, if you start with a false assumption, you can prove anything.
This is known as the Principle of Explosion.
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Other Common Errors
Claim: 1 = 2
“Proof”:

▶ Let x and y be integers such that x = y
▶ Then x2 − xy = x2 − y2

▶ Divide by x − y to get x = x + y
▶ Take x = y = 1 to get 1 = 2

Issue: x = y, so x − y = 0. Divided by zero!
Claim: 4 ≤ 1
“Proof”:

▶ We know that −2 ≤ 1
▶ Square both sides to get 4 ≤ 1

Issue: squaring multiplied by −2 — flips inequality!
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Tips for Proofs
Proof-writing is a skill, and can be difficult. Here
are some tips on how to write your own:

▶ Use full English sentences for clarity.
▶ Proofs should be clear enough to convince

a skeptical classmate
▶ Use lemmas to break up a long proof.
▶ Develop your style through practice.
▶ Read other’s proofs to see their style.
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Fin
Next time: induction!
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