Expectation Continued: Tail
Sum, Coupon Collector, and
Functions of RVs

CS 70, Summer 2019

Lecture 20, 7/29/19

Last Time...

» Expectation describes the weighted
average of a RV.

» For more complicated RVs, use linearity

Today:
» Proof of linearity of expectation

» The tail sum formula
» Expectations of Geometric and Poisson

» Expectation of a function of an RV

Sanity Check

Let X be a RV that takes on values in A.
Let Y be a RV that takes on values in B.
Let ¢ € R be a constant.

Both ¢- X and X + Y are also RVs!
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Proof of Linearity of Expectation |

Recall linearity of expectation:
EXi+ ...+ Xp] =E[X1] + ... + E[X}]

For constant ¢, [E[cX]] = c-E[X]

Xi vatues in A,
First, we show E[cX]] = c - E[X|]:
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Proof of Linearity of Expectation Il

Next, we show E[X + Y] = E[X] + E[Y].
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The Tail Sum Formula oo
non- n¢
Let X be a RV with values in {0,1,2,...,n}. integ

We use “tail” to describe P[X > i]. \ : !

What does Y72, P[X > i] look like?

Small example X only takes values {0, 1, 2}:
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The Tail Sum Formula
The tail sum formula states that:
~ X non-neg.
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Proof: Let p; =P[X =1].
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Expectation of a Geometric |
Let X ~ Geometric(p).
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PX 2= (1-p)
Apply the tail sum formula:
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Expectation of a Geometrlc I

=~ Geom
Use memorylessness: the 2( ct that tf()
geometric RV “resets” after each trial.

s¥ort Hriols ci\ed

B84
suc%\w\ & m"p/ y
“Win TA 1*\EDQ doms

*von ind- doy “reser; doyz loves dentiel
E[x 1= PO+ (-p)[1+ELX]

SONE . PRIX1: i
Ex)-%

Two Cases:

Expectation of a Geometric Ill

Lastly, an intuitive but non-rigorous idea.

X~ Geom (p)
Let X; be an indicator variable for success in a
single trial. Recall trials are i.i.d.
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Coupon Collector |

(Note 19.) I'm out collecting trading cards.
There are n types total. | get a random trading
card every time | buy a cereal box.

What is the expected number of boxes | need to
buy in order to get all n trading cards?

High level picture:
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Coupon Collector Il
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What is the dist. of X;7

What is the dist. of X357

In general, what is the dist. of X;?

X~ Qtom(n(L )




Coupon Collector |11
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Aside: (Partial) Harmonic Series
Harmonic Series: > ;" ¢ Divergrs

Approximation for Zk 1 k in terms of n?
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Break

A Bad Harmonic Series Joke...

A countably infinite number of mathematicians
walk into a bar. The first one orders a pint of
beer, the second one orders a half pint, the third
one orders a third of a pint, the fourth one orders
a fourth of a pint, and so on.

The bartender says ...

Expectation of a Poisson |

Recall the Poisson distribution: values 0,1,2, ...,
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We can use the defmltlon to find E[X]!
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Expectation of a Poisson Il

Optional but intuitive / non-rigorous approach:

Think of a Poisson()\) as a Bin(n, 2) distribution,
taken as n — oo.

Let X ~ Bin(n, 2).
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Rest of Today: Functions of RVs!
Recall X from Lecture 19:
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Refresh your memory: What is X??7
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Example: Functions of RVs
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In General: Functions of RVs

Let X be a RV with values in A.
Distribution of f(X):
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Square of a Bernoulli

Let X ~ Bernoulli(p).
Write out the distribution of X.
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Product of RVs Ex2rcise

Let X be a RV with values in A.
Let Y be a RV with values in B.

XY is also a RV! What is its distribution?
(Use the joint distribution!)

Product of Two Bernoullis EXertiSe

Let X ~ Bernoulli(p;), and Y ~ Bernoulli(ps).
X and Y are independent.

What is the distribution of XY7?

What is E[XY]?

Square of a Binomial |

Let X ~ Bin(n, p).
Decompose into X; ~ Bernoulli(p).
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Square of a Binomial Il
Recall, E[X?] = B and E[X;X]] = p.
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Summary

Today:

» Proof of linearity of expectation: did not use
independence, but did use joint distribution

» Tail sum for non-negative int.-valued RVs!

» Coupon Collector: break problem down into a
sum of geometrics.

» Expectation of a function of an RV: can
apply definition and linearity of expectation
(after expanding) as well!!




