
Expectation Continued: Tail
Sum, Coupon Collector, and

Functions of RVs

CS 70, Summer 2019

Lecture 20, 7/29/19
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Last Time...

I Expectation describes the weighted
average of a RV.

I For more complicated RVs, use linearity

Today:

I Proof of linearity of expectation

I The tail sum formula

I Expectations of Geometric and Poisson

I Expectation of a function of an RV
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Sanity Check
Let X be a RV that takes on values in A.
Let Y be a RV that takes on values in B.
Let c 2 R be a constant.

Both c · X and X + Y are also RVs!
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Proof of Linearity of Expectation I
Recall linearity of expectation:

E[X1 + . . .+ Xn] = E[X1] + . . .+ E[Xn]

For constant c , E[cXi ] = c · E[Xi ]

First, we show E[cXi ] = c · E[Xi ]:
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Proof of Linearity of Expectation II
Next, we show E[X + Y ] = E[X ] + E[Y ].

Two variables to n variables?
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The Tail Sum Formula
Let X be a RV with values in {0, 1, 2, . . . , n}.
We use “tail” to describe P[X � i ].

What does
P1
i=1 P[X � i ] look like?

Small example: X only takes values {0, 1, 2}:
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The Tail Sum Formula
The tail sum formula states that:

E[X ] =
1X

i=1

P[X � i ]

Proof: Let pi = P[X = i ].
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Expectation of a Geometric I
Let X ⇠ Geometric(p).

P[X � i ] =

Apply the tail sum formula:
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Expectation of a Geometric II
Use memorylessness: the fact that the
geometric RV “resets” after each trial.

Two Cases:
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Expectation of a Geometric III
Lastly, an intuitive but non-rigorous idea.

Let Xi be an indicator variable for success in a
single trial. Recall trials are i.i.d.

Xi ⇠

E[X1 + X2 + . . .+ Xk ] =
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Coupon Collector I
(Note 19.) I’m out collecting trading cards.

There are n types total. I get a random trading
card every time I buy a cereal box.

What is the expected number of boxes I need to
buy in order to get all n trading cards?

High level picture:
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Coupon Collector II

Let Xi =

What is the dist. of X1?

What is the dist. of X2?

What is the dist. of X3?

In general, what is the dist. of Xi?
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Coupon Collector III
Let X =

X =

E[X ] =
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Aside: (Partial) Harmonic Series
Harmonic Series:

P1
k=1

1

k

Approximation for
Pn
k=1

1

k in terms of n?
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Break
A Bad Harmonic Series Joke...

A countably infinite number of mathematicians

walk into a bar. The first one orders a pint of

beer, the second one orders a half pint, the third

one orders a third of a pint, the fourth one orders

a fourth of a pint, and so on.

The bartender says ...
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Expectation of a Poisson I
Recall the Poisson distribution: values 0, 1, 2, . . . ,

P[X = i ] =
�i

i !
e��

We can use the definition to find E[X ]!
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Expectation of a Poisson II
Optional but intuitive / non-rigorous approach:

Think of a Poisson(�) as a Bin(n, �n ) distribution,
taken as n !1.

Let X ⇠ Bin(n, �n ).

X =
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Rest of Today: Functions of RVs!
Recall X from Lecture 19:

X =

8
><

>:

1 wp 0.4

1

2
wp 0.25

�1
2

wp 0.35

Refresh your memory: What is X 2?
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Example: Functions of RVs

X 2 =

(
1 wp 0.4

1

4
wp 0.6

What is E[X 2]?

What is E[3X 2 � 5]?
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In General: Functions of RVs

Let X be a RV with values in A.
Distribution of f (X ):

E[f (X )] =
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Square of a Bernoulli

Let X ⇠ Bernoulli(p).
Write out the distribution of X .

What is X 2? E[X 2]?
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Product of RVs

Let X be a RV with values in A.
Let Y be a RV with values in B.

XY is also a RV! What is its distribution?
(Use the joint distribution!)
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Product of Two Bernoullis

Let X ⇠ Bernoulli(p1), and Y ⇠ Bernoulli(p2).
X and Y are independent.

What is the distribution of XY ?

What is E[XY ]?
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Square of a Binomial I

Let X ⇠ Bin(n, p).
Decompose into Xi ⇠ Bernoulli(p).

X =

E[X ] =
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Square of a Binomial II
Recall, E[X 2i ] = 1, and E[XiXj ] = p2.

25 / 26

P
ECXZ ]=Ef( X ,tXzt .

.

.tt/n)2J=tEfCXi2tXz2t...tXn4t(XiXztXiXst . . . ))
- -

square terms cross terms

n of them MIN - 1) of

= Ef square terms ] TEAMS terms ] them .I ::*::*: " "

:i÷i :*
.

ECXIZ ] - P Efx ,Xz3=PZ
> = nptnln - 1) P2



Summary
Today:

I Proof of linearity of expectation: did not use

independence, but did use joint distribution

I Tail sum for non-negative int.-valued RVs!

I Coupon Collector: break problem down into a

sum of geometrics.

I Expectation of a function of an RV: can
apply definition and linearity of expectation

(after expanding) as well!!
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