Expectation Continued: Tail
Sum, Coupon Collector, and
Functions of RVs

CS 70, Summer 2019

Lecture 20, 7/29/19



Last Time...

» Expectation describes the weighted
average of a RV.

» For more complicated RVs, use linearity

Today:
» Proof of linearity of expectation

» The tail sum formula
» Expectations of Geometric and Poisson

» Expectation of a function of an RV



Sanity Check

Let X be a RV that takes on values in A.
Let Y be a RV that takes on values in B.
Let ¢ € R be a constant.

Both ¢- X and X + Y are also RVs!
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Proof of Linearity of Expectation |

Recall linearity of expectation:
E[X; + ...+ X, = E[Xi] + ... + E[X]]

For constant ¢, E[cXj] = c - E[X]]

Xi Volues in A
First, we show E[cX]] = ¢ - E[X]]:
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Proof of Linearity of Expectation Il

Next, we show E[X + Y] = E[X] + E[Y].
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The Tail Sum Formula o
| | non- ngo
Let X be a RV with values in {0,1,2,...,n}. integ

We use “tail” to describe P[X > 1]. 1 : i

What does > 2, P[X > i] look like?

Small example X only takes values {0, 1,2}:
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The Tail Sum Formula
The tail sum formula states that: N
o X non-Neq.
E[X]=S P[X > \"’ITQ%U?
[X] Z:; [X > 1]

Proof Let p; = P[X = 1].
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Expectation of a Geometric |
Let X ~ Geometric(p).

1
PX > i1 = (1-p)
Apply the tail sum formula:
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Expectation of a Geometric Il
XSt
Use memorylessness: the fact that t
geometric RV “resets” after each trial.
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Expectation of a Geometric |1l

Lastly, an intuitive but non-rigorous idea.
X~ Geom (p)

Let X; be an indicator variable for success in a
single trial. Recall trials are i.i.d.
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Coupon Collector |

(Note 19.) I'm out collecting trading cards.
There are n types total. | get a random trading
card every time | buy a cereal box.

What is the expected number of boxes | need to
buy in order to get all n trading cards?

High level picture:
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Coupon Collector Il

Let X; = and the (™
What is the dist. of X;7 X, =1 quways,
What is the dist. of Xo7 X, ~Geom (n/;\\')
What is the dist. of Xs? X, ~ @eom (25-)

In general, what is the dist. of X;?

Xi ~ C:ltom(n"' v



Coupon Collector Il
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Aside: (Partial) Harmonic Series
Harmonic Series: > ;" ¢ Divergrs

Approximation for Zk | 7 in terms of n?
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Break

A Bad Harmonic Series Joke...

A countably infinite number of mathematicians
walk into a bar. The first one orders a pint of
beer, the second one orders a half pint, the third
one orders a third of a pint, the fourth one orders
a fourth of a pint, and so on.

The bartender says ...



Expectation of a Poisson |

Recall the Poisson distribution: values 0,1, 2, ...,

K~ Poiln)
PX =i] = %e—k

We can use the deflnltlon to find E[X]!
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Expectation of a Poisson |l

Optional but intuitive / non-rigorous approach:

Think of a Poisson()\) as a Bin(n, 2) distribution,
taken as n — oo.

Let X ~ Bin(n, 2).
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Rest of Today: Functions of RVs!
Recall X from Lecture 19:

1 wp 0.4
X=4q12 wp 0.25
—% wp 0.35

Refresh your memory: What is X??
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Example: Functions of RVs

X2 _ 1 wp 0.4
wp 0.6

What is E[X?]? N §
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In General: Functions of RVs

Let X be a RV with values in A.
Distribution of f(X):
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Square of a Bernoulli

Let X ~ Bernoulli(p).
Write out the distribution of X.
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Product of RVs Ex&rcise

Let X be a RV with values in A.
Let Y be a RV with values in B.

XY is also a RV! What is its distribution?
(Use the joint distribution!)



Product of Two Bernoullis EXertise

Let X ~ Bernoulli(p;), and Y ~ Bernoulli(p,).
X and Y are independent.

What is the distribution of XY?

What is E[XY]?



Square of a Binomial |

Let X ~ Bin(n, p).
Decompose into X; ~ Bernoulli(p).
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Square of a Binomial 1l
Recall, E[X?] = R and E[X;X]] = p*.
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Summary

Today:

» Proof of linearity of expectation: did not use
Independence, but did use joint distribution

» Tail sum for non-negative int.-valued RVs!

» Coupon Collector: break problem down into a
sum of geometrics.

» Expectation of a function of an RV: can
apply definition and linearity of expectation
(after expanding) as well!!



