Variance

CS 70, Summer 2019

Lecture 21, 7/30/19
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Game 1: Flip a"coin 10 times. For each Head,
you win 100. For each Tail, you lose 100.

Expected Winnings on Flip i:
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Two Games foir

Game 2: Flip a’coin 10 times. For each Head,
you win 10000. For each Tail, you lose 10000.

xpected Winnings on Flip /:

F
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Expected Winnings After 10 Flips:
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Q: Which game would you rather play?

Definition of Variance

The key difference is the variance.

Variance is the expected “distance” to mean.

Let X be a RV with E[X] = . Then:

Var(X) = [ (x-a)? ]
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Alternate Definition

We can use linearity of expectation to get an
alternate form that is often easier to apply.
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Variance: A Visual

Mean




Variance of a Bernoulli
Let X ~ Bernoulli(p).
Then E[X] = £
What is X2? E[X?]?
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Variance of a Dice Roll
What is the variance of a single 6-sided dice roll?

R=vaue of a dice wl {1,23,%s,6)

What is R??
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Variance of a Dice Roll
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Var(R) = E[R*] - (E1RD*
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Variance of a Geometric
Know the variance; proof optional, but good
practice with manipulating RVs.

Let X ~ Geometric(p).
Strategy: Nice expression for p - E[X?]
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Variance of a Geometric Il
From the distribution of X, we know:
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From E[X], we know: .
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Variance of a Geometric Il
Recall E[X] = 3.
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Variance of a Poisson

Same: know the variance; proof optional, but
good practice with functions of RVs.
Pl

Let X ~ Poisson(\).
Strategy: Compute E[X(X — 1)].
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Variance of a Poisson Il
Use E[X(X — 1)] to compute Var(X).
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Break

Would you rather only wear sweatpants for the
rest of your life, or never get to wear sweatpants
ever again?

Properties of Variance I: Scale

Let X be a RV, and let ¢ € R be a constant.
Let E[X] =

Var(cx) = ¢&-Vor (X) |
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Properties of Variance ll: Shift

Let X be a RV, and let ¢ € R be a constant.

Let E[X] = u.
Then, let u' = E[X + ] :A{‘\' C

Var(X + ¢) = N (X)
Nor (% +0) = \E[((x&c)f Vol
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Example: Shift It!
Consider the following RV:

1 w.p. 0.4
X=43 w.p. 0.2
5 w.p. 0.4

=\or LX'3)

What is Var(X)? Shift it!
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Sum of Independent RVs

Let Xi, ..., X, be independent RVs. Then:
Var(X: + ...+ X,) = Var(Xy) + ... + Var(X,)
Proof: Tomorrow!

Today: Focus on applications.

Variance of a Binomial

Let X ~ Bin(n, p). Then,

X=Xt Xt tha
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Here, X; ~ ger(9)

Sum of Dependent RVs

Main strategy: linearity of expectation and
indicator variables

Useful Fact:
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HW Mixups (Fixed Points)

(In notes.) n students hand in HW. | mix up their
HW randomly and return it, so that every possible
mixup is equally likely.

Let S = # of students who get their own HW.

Last time: defined S; = \ﬂd\%ﬁg?gﬁw ¢

Si ~ Ber (Jq'\)

Using linearity of expectation:

E[S] = €[S+ Sot - 451+ ELS\* BIS.I 1 (S
=x(n)

HW Mixups II

Using our useful fact:
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HW Mixups Il
What is 527 E[S?]?
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HW Mixups IV Summary

Put it all together to compute Var(X). Today:
T - .
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