

Variance of a Bernoulli Let $X \sim \text{Bernoulli}(p)$. Then $\mathbb{E}[X] =$ What is X^2 ? $\mathbb{E}[X^2]$? Var $[X] =$	Variance of a Dice Roll What is the variance of a single 6-sided dice roll? <i>R</i> = What is <i>R</i> ² ?	Variance of a Dice Roll $\mathbb{E}[R^2] =$ $Var(R) =$
Contract M Cont	Charjance of a Geometric II From the distribution of X, we know: From 𝔅[X], we know:	Variance of a Geometric III Recall $\mathbb{E}[X] = \frac{1}{p}$.

Variance of a Poisson Same: know the variance; proof optional, but good practice with functions of RVs. Let $X \sim \text{Poisson}(\lambda)$. Strategy: Compute $\mathbb{E}[X(X - 1)]$.	Variance of a Poisson II Use $\mathbb{E}[X(X - 1)]$ to compute Var(X).	Break Would you rather only wear sweatpants for the rest of your life, or never get to wear sweatpants ever again?
・ロ・・(ヴ ・・ミト・ミー 夏 - つへで	<ロト・クト・ミト・ミト 夏 のQで	<ロト < ⑦ > < ミト < き > ミ クス (*
13/26	14/26	15/26
Properties of Variance I: Scale Let X be a RV, and let $c \in \mathbb{R}$ be a constant. Let $\mathbb{E}[X] = \mu$. Var(cX) =	Properties of Variance II: Shift Let X be a RV, and let $c \in \mathbb{R}$ be a constant. Let $E[X] = \mu$. Then, let $\mu' = \mathbb{E}[X + c] =$ Var $(X + c) =$	Example: Shift It! Consider the following RV: $X = \begin{cases} 1 & \text{w.p. 0.4} \\ 3 & \text{w.p. 0.2} \\ 5 & \text{w.p. 0.4} \end{cases}$ What is Var(X)? Shift it!
<ロ><ラ><ラ><き><き)、そうへひ	<ロト (費) (ミ) (き) ま のへひ	<ロト・(ラ)・(ミ)・(き)、きつ)の(で
16/26	17/26	18/26

Sum of Independent RVs	Variance of a Binomial	Sum of Dependent RVs
Let X_1, \ldots, X_n be independent RVs. Then:	Let $X \sim Bin(n, p)$. Then,	Main strategy: linearity of expectation and indicator variables
$Var(X_1+\ldots+X_n)=Var(X_1)+\ldots+Var(X_n)$	X =	Useful Fact:
Proof: Tomorrow!	Here, $X_i \sim$	$(X_1+X_2+\ldots+X_n)^2=$
Today: Focus on applications.	Var(X) =	
HW Mixups (Fixed Points)	HW Mixups II	۲۵۰۰۵۰۰۲۰۰۲ کې موم 20/26 HW Mixups III
(In notes.) <i>n</i> students hand in HW. I mix up their HW randomly and return it, so that every possible mixup is equally likely .	Using our useful fact : $\mathbb{E}[S^2] =$	What is S_i^2 ? $\mathbb{E}[S_i^2]$?
Let $S = \#$ of students who get their own HW.		
Last time: defined $S_i =$		For $i \neq j$, what is $S_i S_j$? $\mathbb{E}[S_i S_j]$?
$S_i \sim$		
Using linearity of expectation : $\mathbb{E}[S] =$		
(ロ)(費)(ま)(ま)まで、その(で 22/26)	 (D) (Ø) (2) (2) 	2 2 γςζ (D) (D) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2

HW Mixups IV	Summary
Put it all together to compute Var(X).	 Today: Variance measures how far you deviate from mean Variance is additive for independent RVs; proof to come tomorrow Use linearity of expectation and indicator variables
$\langle \Box \rangle \langle \mathcal{O} \rangle \langle \hat{z} \rangle \langle \hat{z} \rangle$	25/26 25/26