
Variance

CS 70, Summer 2019

Lecture 21, 7/30/19
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Two Games
Game 1: Flip a coin 10 times. For each Head,
you win 100. For each Tail, you lose 100.

Expected Winnings on Flip i :

Expected Winnings After 10 Flips:
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Two Games
Game 2: Flip a coin 10 times. For each Head,
you win 10000. For each Tail, you lose 10000.

Expected Winnings on Flip i :

Expected Winnings After 10 Flips:

Q: Which game would you rather play?
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Definition of Variance
The key difference is the variance.

Variance is the expected “distance” to mean.

Let X be a RV with E[X ] = µ. Then:

Var(X ) =
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Alternate Definition
We can use linearity of expectation to get an
alternate form that is often easier to apply.

Var(X ) =
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Variance: A Visual
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Variance of a Bernoulli
Let X ∼ Bernoulli(p).
Then E[X ] =

What is X 2? E[X 2]?

Var[X ] =
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Variance of a Dice Roll
What is the variance of a single 6-sided dice roll?

R =

What is R2?
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Variance of a Dice Roll
E[R2] =

Var(R) =
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Variance of a Geometric
Know the variance; proof optional, but good
practice with manipulating RVs.

Let X ∼ Geometric(p).
Strategy: Nice expression for p · E[X 2]
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Variance of a Geometric II
From the distribution of X , we know:

From E[X ], we know:
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Variance of a Geometric III
Recall E[X ] = 1

p .
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Variance of a Poisson
Same: know the variance; proof optional, but
good practice with functions of RVs.

Let X ∼ Poisson(λ).
Strategy: Compute E[X (X − 1)].
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Variance of a Poisson II
Use E[X (X − 1)] to compute Var(X ).
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Break

Would you rather only wear sweatpants for the
rest of your life, or never get to wear sweatpants
ever again?
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Properties of Variance I: Scale

Let X be a RV, and let c ∈ R be a constant.
Let E[X ] = µ.

Var(cX ) =
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Properties of Variance II: Shift

Let X be a RV, and let c ∈ R be a constant.
Let E [X ] = µ.
Then, let µ′ = E[X + c ] =

Var(X + c) =
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Example: Shift It!
Consider the following RV:

X =





1 w.p. 0.4

3 w.p. 0.2

5 w.p. 0.4

What is Var(X )? Shift it!

18 / 26



Sum of Independent RVs

Let X1, . . . ,Xn be independent RVs. Then:

Var(X1 + . . .+ Xn) = Var(X1) + . . .+ Var(Xn)

Proof: Tomorrow!

Today: Focus on applications.
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Variance of a Binomial

Let X ∼ Bin(n, p). Then,

X =

Here, Xi ∼

Var(X ) =
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Sum of Dependent RVs
Main strategy: linearity of expectation and
indicator variables

Useful Fact:

(X1 + X2 + . . .+ Xn)
2 =
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HW Mixups (Fixed Points)
(In notes.) n students hand in HW. I mix up their
HW randomly and return it, so that every possible
mixup is equally likely.

Let S = # of students who get their own HW.

Last time: defined Si =

Si ∼

Using linearity of expectation:
E[S ] =
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HW Mixups II

Using our useful fact:
E[S2] =
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HW Mixups III
What is S2

i ? E[S2
i ]?

For i 6= j , what is SiSj? E[SiSj ]?
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HW Mixups IV
Put it all together to compute Var(X ).
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Summary
Today:

I Variance measures how far you deviate from
mean

I Variance is additive for independent RVs;
proof to come tomorrow

I Use linearity of expectation and indicator
variables
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