Variance

CS 70, Summer 2019

Lecture 21, 7/30/19



Two Games _
four
Game 1: Flip a"coin 10 times. For each Head,
you win 100. For each Tail, you lose 100.

Expected Winnings on Flip /:
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Two Games coir

Game 2: Flip a'coin 10 times. For each Head,
you win 10000. For each Tail, you lose 10000.

xpected Winnings on Flip /:

Fu
E(FJ= O« F(1o000) + 3 (-1woo)
Expected Winnings After 10 Flips:
D

E{Fl=0

Q: Which game would you rather play?



Definition of Variance

The key difference is the variance.
Variance is the expected “distance” to mean.

Let X be a RV with E[X] = u. Then:

Var(X) = | (X-a)* ]
—
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Alternate Definition

We can use linearity of expectation to get an
alternate form that is often easier to apply.

var(x) = ED]- m?
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Variance: A Visual

Mean
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Variance of a Bernoulli

Let X ~ Bernoulli(p).
Then E[X] =0

What is X2? E[X?]?
1 wp p ELx]= 1p* 0-0-p)
X {0 wp P P
Var[X] = \E[xz] (r:m)
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Variance of a Dice Roll
What is the variance of a single 6-sided dice roll?

R=~v0uye of o dice VD“ {‘/2’3;‘1}5,b)

What is R??
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Variance of a Dice Roll
E[R?] = | 1 + 413+ lo+ 253k
g [ ~ < ]
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Variance of a Geometric
Know the variance; proof optional, but good
practice with manipulating RVs.

Let X ~ Geometric(p).
Strategy: Nice expression for p - E[X?]

Elx4)= L p + 40-pp+ A-prpt...
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Variance of a Geometric Il
From the distribution of X, we know:

O Z7Plx=i1= p+(-ppt(-prpt .= 1
From E[X], we know: )
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Variance of a Geometric Il
Recall E[X] =
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Variance of a Poisson

Same: know the variance; proof optional, but
good practice with functions of RVs.

Let X ~ Poisson(}). \PD(= L]
Strategy: Compute E[X(o)o< —1)] i, 7‘
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Variance of a Poisson Il
Use E[X(X — 1)] to compute Var(X).
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Break

Would you rather only wear sweatpants for the
rest of your life, or never get to wear sweatpants
ever again?



Properties of Variance I: Scale

Let X be a RV, and let ¢ € R be a constant.
Let E[X] =

Var(cX) = C" \I()((X)
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Properties of Variance IlI: Shift

Let X be a RV, and let ¢ € R be a constant.
Let E[X] = u.
Then, let ' = E[X + (] :A{‘\' C

Var(X + ¢) = N (X)
Vor(x+0)= | (x+ QW)

R A
= E[x-wy] =N




Example: Shift It!
Consider the following RV:

1 w.p. 0.4
X=<3 w.p. 0.2
5 w.p. 0.4

=\or (X-3)
What is Var(X)? Shift it!

4 w\m.%
0T e |- 403002732
Z wp O e[ x-31=0
Nae((x-3) = 32



Sum of Independent RVs

Let Xi, ..., X, be independent RVs. Then:
Var(X1 + ...+ X,) = Var(Xy) + ... + Var(X,)
Proof: Tomorrow!

Today: Focus on applications.
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Variance of a Binomial

Let X ~ Bin(n, p). Then,

X=¥Xt¥,t.. t¥a

Here, X; ~ gex(®)

Var(X) = \Qr (Xd\— \JD(Xz)"' . ANar (Xn)
= NYor(X)  x—Bnin,p)
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- o (%) =Var(Y)




Sum of Dependent RVs

Main strategy: linearity of expectation and
indicator variables

Useful Fact:
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HW Mixups (Fixed Points)

(In notes.) n students hand in HW. | mix up their
HW randomly and return it, so that every possible
mixup Is equally likely.

Let S = # of students who get their own HW.

Last time: defined S; = '\ﬂdi%@(&ﬁz\gb‘;\iﬁx ¢

Si ~ oer ()

Using linearity of expectation:

E[S] = €[S+ Sat - 1Sa 1+ E[S N BLS:V 1.+ S]
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HW Mixups Il

Using our useful fact:
E[S?] = B[ (St Syt tSa) ]
n
= 2 S TeY
Lneary:
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HW Mixups Il
What is 5?7 E[S?]?

\ 0 wp -}

For i # j, what is S,‘SJ'? E[S,SJ]7
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HW Mixups IV

Put it all together to compute Var(X).
vor ()= ELX7] (&)
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Summary
Today:
» Variance measures how far you deviate from
mean

» Variance is additive for independent RVs;
proof to come tomorrow

» Use linearity of expectation and indicator
variables



