Variance

CS 70, Summer 2019

Lecture 21, 7/30/19

Two Games fair

Game 1: Flip a coin 10 times. For each Head, vou win 100. For each Tail, you lose 100.

Expected Winnings on Flip *i*:

Fi

$$\mathbb{E}[F_i] = 100(\frac{1}{2}) + (-100)(\frac{1}{2}) = 0$$

Expected Winnings After 10 Flips:

$$E[F] = \sum_{i=1}^{10} IE[F_i] = 0$$

Two Games fair

Game 2: Flip a coin 10 times. For each Head, you win 10000. For each Tail, you lose 10000.

Expected Winnings on Flip
$$i$$
:

$$E[F:] = 0 = \frac{1}{2}(10000) + \frac{1}{2}(-10000)$$

Expected Winnings After 10 Flips:

$$E[F] = 0$$

Q: Which game would you rather play?

Definition of Variance

The key difference is the **variance**.

Variance is the **expected "distance" to mean.**

Let X be a RV with $\mathbb{E}[X] = \mu$. Then:

Alternate Definition

We can use **linearity of expectation** to get an alternate form that is often **easier to apply**.

$$Var(X) = \mathbb{E}[X^{2}] - M^{2}$$

$$\mathbb{E}[(X-M)^{2}] = \mathbb{E}[X^{2}-2MX+M^{2}]$$

$$\mathbb{E}[(X-M)^{2}] = \mathbb{E}[X^{2}] - 2M\mathbb{E}[X] + M^{2}$$

$$= \mathbb{E}[X^{2}] - M^{2}$$

Variance: A Visual

Variance of a Bernoulli

Let $X \sim \text{Bernoulli}(p)$. Then $\mathbb{E}[X] = \rho$ What is X^2 ? $\mathbb{E}[X^2]$?

$$\chi^{2} = \begin{cases} 1 & \text{wp } P \\ 0 & \text{wp } P \end{cases}$$
 $E[\chi^{2}] = 1 \cdot P + 0 \cdot (1-P)$ $= P$.

$$Var[X] = \mathbb{E}[\chi^{2}] - (\mathbb{E}[\chi])^{2}$$

$$= P - (P)^{2} = P(1-P)$$

$$\chi - Ber(P) = Vor(X)$$

$$= Vor(X)$$

Variance of a Dice Roll

What is the variance of a single 6-sided dice roll?

$$R = volue of a dice roll. \{1,2,3,4,5,6\}$$

What is R^2 ?

$$R^{2} = \begin{cases} 1 & \text{wp } \frac{1}{6} \\ 4 & \text{q} \\ 16 & \text{1} \\ 25 & \text{36} \end{cases}$$

Variance of a Dice Roll

$$\mathbb{E}[R^2] = \frac{1}{b} \left[1 + \frac{4+9+16+25+36}{20} \right]$$

$$= \frac{1}{b} (91)$$

$$Var(R) = \mathbb{E}[R^{2}] - (\mathbb{E}[R])^{2}$$

$$= 9 - (\frac{1}{2})^{2}$$

(NOTES.)

Variance of a Geometric

Know the variance; proof optional, but good practice with **manipulating RVs**.

Let $X \sim \text{Geometric}(p)$.

Strategy: Nice expression for
$$p \cdot \mathbb{E}[X^2]$$

$$\mathbb{E}[X^{2}] = 1 \cdot p + 4(1-p)p + 9(1-p)^{2}p + ...$$

$$-[1-p)\mathbb{E}[X^{2}] = -[1(1-p)p + 4(1-p)^{2}p]$$

subtract from both sides.

$$PE[X^{2}] = 1 \cdot p + 3(1-p)p + 5(1-p)^{2}p + \dots$$

$$= (2 \cdot p + 4(1-p)p + 6(1-p)^{2}p + \dots) + (-p - (1-p)p - (1-p)^{2}p - \dots)$$

Variance of a Geometric II

From the distribution of X, we know:

From $\mathbb{E}[X]$, we know:

$$\mathbb{E}[X] = 1 \cdot p + 2 \cdot ((-p)p + 3(1-p)^2p^+ \dots$$

$$E[X] = 1 \cdot p + 2 \cdot ((-p)p + 3(1-p) p + \dots)$$

$$= \frac{1}{p}$$

$$2 \cdot (2)$$

$$(2 \cdot p + 4(1-p)p + 6(1-p)^{2}p + \dots) + (-p - (1-p)p - (1-p)^{2}p + \dots)$$

$$P[X^{2}] = 2 \cdot E[X] - 1$$

$$||T(x^{2})||^{2} = 2 - p$$

Variance of a Geometric III

Recall
$$\mathbb{E}[X] = \frac{1}{p}$$
.

Vor
$$(X) = IE[X^2] - (IE[X])^2$$

= $\frac{2-p}{p^2} - \frac{1}{p^2} = \frac{1-p}{p^2}$

Variance of a Poisson

Same: **know the variance**; proof optional, but good practice with **functions of RVs**.

Let
$$X \sim \text{Poisson}(\lambda)$$
.
Strategy: Compute $\mathbb{E}[X(X-1)]$.
 $\mathbb{E}[X(X-1)] = \frac{(\text{def})}{(\text{i}-2)!}$.
 $= e^{-\lambda} \frac{\lambda^{i}}{(\text{i}-2)!}$. Taylor series for e^{λ} .
 $= e^{-\lambda} \frac{\lambda^{2}}{(\lambda^{2})(e^{\lambda})} = \lambda^{2}$

Variance of a Poisson II

Use $\mathbb{E}[X(X-1)]$ to compute Var(X).

$$Var(X) = IE[X^{2}] - (IE[X])^{2}$$

$$= IE[X(X-1)] + IE[X] - (IE[X])^{2}$$

$$= 10.94 \text{ Shade} \text{ Yeskerday}$$

$$= \chi^{2} + \lambda - (\chi^{2})^{2} = \chi^{2}$$

Break

Would you rather only wear sweatpants for the rest of your life, or never get to wear sweatpants ever again?

Properties of Variance I: Scale

Let X be a RV, and let $c \in \mathbb{R}$ be a constant. Let $\mathbb{E}[X] = \mu$.

$$Var(cX) = C^{2} \cdot Var(X)$$

$$Var(cX) = \mathbb{E}[(cX)^{2}] - (\mathbb{E}[cX])^{2}$$

$$= \mathbb{E}[c^{2}X^{2}] - (c\mathbb{E}[X])^{2}$$

$$= c^{2}\mathbb{E}[X^{2}] - c^{2}(\mathbb{E}[X])^{2}$$

$$= c^{2}Var(X)$$

Properties of Variance II: Shift

Let X be a RV, and let $c \in \mathbb{R}$ be a constant. Let $E[X] = \mu$. Then, let $\mu' = \mathbb{E}[X + c] = \mathcal{U} + \mathcal{C}$ $Var(X + c) = \sqrt{Or(X)}$ $Vor(X+C) = \mathbb{E}\left[\left((X+C)-\mathcal{U}'\right)^{2}\right]$ = IE[(X+x-M-x)2] = IE[(x-M)2] = Yar(X)

Example: Shift It!

Consider the following RV:

$$X = \begin{cases} 1 & \text{w.p. 0.4} \\ 3 & \text{w.p. 0.2} \\ 5 & \text{w.p. 0.4} \end{cases}$$
What is Var(X)? Shift it!

$$X-3=\begin{cases} -2 & \text{wp. 0.4} \\ 0 & \text{wp. 0.2} \\ 2 & \text{wp. 0.4} \end{cases} = \begin{cases} 4 & \text{wp. 0.8} \\ 0 & \text{wp. 0.2} \end{cases} = \begin{cases} (x-3)^2 = \begin{cases} 6 & \text{wp. 0.8} \\ 0 & \text{wp. 0.2} \end{cases} = 3.2 \end{cases}$$

$$Var((x-3)) = 3.2$$

Sum of Independent RVs

Let X_1, \ldots, X_n be independent RVs. Then:

$$Var(X_1 + \ldots + X_n) = Var(X_1) + \ldots + Var(X_n)$$

Proof: Tomorrow!

Today: Focus on applications.

Variance of a Binomial

Let $X \sim \text{Bin}(n, p)$. Then, $X = \chi_1 + \chi_2 + \dots + \chi_n$ Here, $X_i \sim \text{Ber}(P)$ X; iid. $Var(X) = Var(\chi_1) + Var(\chi_2) + ... + Var(\chi_n)$ = M. Var (X1) x~ Bin (n, p) Y~Bin(n, 1-p) $\sqrt{or}(X) - \sqrt{or}(Y)$

Sum of Dependent RVs

Main strategy: **linearity of expectation** and **indicator variables**

Useful Fact:

$$(X_{1} + X_{2} + ... + X_{n})^{2} = (X_{1} + X_{2} + ... + X_{n})(X_{1} + X_{2} + ... + X_{n})$$

$$= (X_{1}^{2} + X_{2}^{2} + ... + X_{n}^{2}) + (X_{1}X_{2} + X_{1}X_{3} + ... + X_{n-1}X_{n})$$

$$= (X_{1}^{2} + X_{2}^{2} + ... + X_{n}^{2}) + (X_{1}X_{2} + X_{1}X_{3} + ... + X_{n-1}X_{n})$$

$$= (X_{1}^{2} + X_{2}^{2} + ... + X_{n}^{2}) + (X_{1}X_{2} + X_{1}X_{3} + ... + X_{n-1}X_{n})$$

$$= (X_{1}^{2} + X_{2}^{2} + ... + X_{n}^{2}) + (X_{1}X_{2} + X_{1}X_{3} + ... + X_{n-1}X_{n})$$

$$= (X_{1}^{2} + X_{2}^{2} + ... + X_{n}^{2}) + (X_{1}X_{2} + X_{1}X_{3} + ... + X_{n-1}X_{n})$$

$$= (X_{1}^{2} + X_{2}^{2} + ... + X_{n}^{2}) + (X_{1}X_{2} + X_{1}X_{3} + ... + X_{n-1}X_{n})$$

$$= (X_{1}^{2} + X_{2}^{2} + ... + X_{n}^{2}) + (X_{1}X_{2} + X_{1}X_{3} + ... + X_{n-1}X_{n}^{2})$$

$$= (X_{1}^{2} + X_{2}^{2} + ... + X_{n}^{2}) + (X_{1}X_{2} + X_{1}X_{3} + ... + X_{n-1}X_{n}^{2})$$

$$= (X_{1}^{2} + X_{2}^{2} + ... + X_{n}^{2}) + (X_{1}X_{2} + X_{1}X_{3} + ... + X_{n-1}X_{n}^{2})$$

$$= (X_{1}^{2} + X_{2}^{2} + ... + X_{n}^{2}) + (X_{1}^{2} + X_{2}^{2} + ... + X_{n}^{2})$$

$$= (X_{1}^{2} + X_{2}^{2} + ... + X_{n}^{2}) + (X_{1}^{2} + X_{2}^{2} + ... + X_{n}^{2})$$

$$= (X_{1}^{2} + X_{2}^{2} + ... + X_{n}^{2}) + (X_{1}^{2} + X_{2}^{2} + ... + X_{n}^{2})$$

$$= (X_{1}^{2} + X_{2}^{2} + ... + X_{n}^{2}) + (X_{1}^{2} + X_{2}^{2} + ... + X_{n}^{2})$$

$$= (X_{1}^{2} + X_{2}^{2} + ... + X_{n}^{2}) + (X_{1}^{2} + X_{2}^{2} + ... + X_{n}^{2})$$

$$= (X_{1}^{2} + X_{2}^{2} + ... + X_{n}^{2}) + (X_{1}^{2} + X_{2}^{2} + ... + X_{n}^{2})$$

$$= (X_{1}^{2} + X_{2}^{2} + ... + X_{n}^{2}) + (X_{1}^{2} + X_{2}^{2} + ... + X_{n}^{2})$$

$$= (X_{1}^{2} + X_{2}^{2} + ... + X_{n}^{2}) + (X_{1}^{2} + ... + X_{n}^{2} + ... + X_{n}^{2})$$

$$= (X_{1}^{2} + X_{2}^{2} + ... + X_{n}^{2}) + (X_{1}^{2} + ... + X_{n}^{2} + ... + X_{n}^{2})$$

$$= (X_{1}^{2} + X_{1}^{2} + ... + X_{n}^{2} + ... + X_{n}^{2})$$

$$= (X_{1}^{2} + X_{1}^{2} + ... + X_{n}^{2} + ... + X_{n}^{2})$$

$$= (X_{1}^{2} + X_{1}^{2} + ... + X_{n}^{2} + ... + X_{n}^{2})$$

$$= (X_{1}^{2} + X_{1}^{2} + ... + X_{n}^{2} + ... + X_{n}^{2})$$

$$=$$

HW Mixups (Fixed Points)

(In notes.) *n* students hand in HW. I mix up their HW randomly and return it, so that every possible mixup is **equally likely**.

Let S = # of students who get their own HW.

Last time: defined
$$S_i = indicator$$
 for Student i getting own HW. $S_i \sim Ber(\frac{1}{n})$

Using linearity of expectation:

$$\mathbb{E}[S] = \mathbb{E}[S_1 + S_2 + ... + S_n] = \mathbb{E}[S_1] + \mathbb{E}[S_2] + ... + \mathbb{E}[S_n]$$

$$= \frac{1}{n}(n) \quad \boxed{1}$$

HW Mixups II

Using our useful fact: $\mathbb{E}[S^2] = \mathbb{E}[(S_1 + S_2 + ... + S_n)^2]$ $= \mathbb{E}[\sum_{i=1}^n S_i^2 + \sum_{i \neq j} S_i S_j]$ Unearity: $= \mathbb{E}[\sum_{i=1}^n S_i^2] + \mathbb{E}[\sum_{i \neq j} S_i S_j]$

=
$$n \cdot \mathbb{E}[S_1^2] + n(n-1) \mathbb{E}[S_1S_2]$$

HW Mixups III

What is S_i^2 ? $\mathbb{E}[S_i^2]$?

$$S_{1}^{2} = \begin{cases} 1 & \text{wp h} \\ 0 & \text{wp 1-h} \end{cases}$$
 $|E[S_{1}^{2}] = \frac{1}{2}$

For $i \neq j$, what is $S_i S_j$? $\mathbb{E}[S_i S_j]$?

$$S_1 S_2 = \begin{cases} 1 \implies both S_1, S_2 = 1 \\ \Rightarrow both Student1, \\ \text{Student 2 get} \\ \text{own HW.} \end{cases} = \frac{1}{n} \left(\frac{1}{n-1}\right)$$

$$= \frac{1}{n} \left(\frac{1}{n-1}\right)$$

HW Mixups IV

Put it all together to compute Var(X).

$$Vor(X) = IE[X^{2}] - (IE[X])^{2}$$

$$= nE[S_{1}^{2}] + n(n-1)IE[S_{1}S_{2}] - (1)^{2}$$

$$= n(\frac{1}{2}) + n(n-1)\frac{1}{n(n-1)} - 1$$

$$= 1$$

Summary

Today:

- Variance measures how far you deviate from mean
- Variance is additive for independent RVs; proof to come tomorrow
- Use linearity of expectation and indicator variables