
Covariance and Correlation

CS 70, Summer 2019

Lecture 22, 7/31/19
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Last Time...

I Variance measures deviation from mean

I Variance is additive for independent RVs

I Use linearity of expectation and indicator
variables

Today:

I Proof that var. is additive for ind. RVs

I Talk about covariance and correlation

I Some RV practice (if time)
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Product of RVs
Let X be a RV with values in A.
Let Y be a RV with values in B.

What does the distribution of XY look like?

What if X , Y are independent?
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For Independent RVs...
If X and Y are independent, we can show that:

E[XY ] = E[X ] · E[Y ]
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Variance is Additive for Ind. RVs
If X and Y are independent, we can show that:

Var(X + Y ) = Var[X ] + Var[Y ]
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Can You Multiply?
If X and Y are independent, then:

E[XY ] =

Is the converse true?
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Covariance
Measures “how independent” two RVs are. Let
E[X ] = µ1, and let E[Y ] = µ2.

Cov(X ,Y ) =

Alternate Form:

Cov(X ,Y ) =
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Example: Coin Flips I
I flip two fair coins.
Let X count the number of heads, and let Y be
an indicator for the first coin being a head.

First, what is XY ?
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Example: Coin Flips I
What is Cov(X ,Y )?
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Properties of Covariance I
If X and Y are independent, then:

Cov(X ,Y ) =

Is the converse true?
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Properties of Covariance II
What happens when we take Cov(X ,X )?

Can use either definition of covariance!
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Properties of Covariance III
Covariance is bilinear.

Cov(a1X1 + a2X2,Y ) =

Cov(X , b1Y1 + b2Y2) =
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Practice: Bilinearity!

Simplify Cov(3X + 4Y , 5X � 2Y ).
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Example: Coin Flips II
Same setup: Two fair flips. X is number of
heads, and Y is indicator for the first coin heads.

Recall: Cov(X ,Y ) =

Now, let Y 0 be an indicator for the first coin being
a tail. How does the covariance change?
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Properties of Covariance IV

For any two RVs X , Y :

Var(X + Y ) =
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Break

If you could eliminate one food so that no one
would eat it ever again, what would you pick to
destroy?
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Correlation

For any two RVs X , Y that are not constant:

Corr(X ,Y ) =

Sanity Check!

What is Corr(X ,X )?

What is Corr(X ,�X )?

What is Corr(X ,Y ) for X ,Y independent?
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Example: Coin Flips II
I flip two fair coins.
Let X count the number of heads, and let Y be
an indicator for the first coin being a head.

What is Corr(X ,Y )?
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Size of Correlation?
For any RVs X and Y that are not constants:

�1  Corr(X ,Y )  1

Proof: Define new RVs using X and Y :

X̃ =
Ỹ =
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Size of Correlation?
(Continued:)
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RV Practice: Two Roads
There are two paths from Soda to VLSB.
I usually choose a path uniformly at random.
# minutes spent on Path 1 is a Geometric(p1) RV.
# minutes spent on Path 2 is a Geometric(p2) RV.

Today, it took me 6 minutes to walk from Soda
to VLSB. Given this, what is the probability that I
chose Path 1?
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RV Practice: Two Roads
Continued:
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RV Practice: RandomSort
I have cards labeled 1, 2, . . . , n. They are shu✏ed.

I want them in order. I sort them in a naive way.
I start with all cards in an “unsorted” pile. I draw
cards from the unsorted pile uniformly at random
until I get card 1. I place card 1 in a “sorted”
pile, and continue, this time looking for card 2.
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RV Practice: RandomSort
What is the expected number of draws I need?

What is the variance of the number of draws?
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RV Practice: Packets
Packets arrive from sources A and B.
I fix a time interval. Over this interval, the number
of packets from A and B have Poisson(�A) and
Poisson(�B) distributions, and are independent.

What is the distribution of the total number of
packets I receive in this time interval?
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RV Practice: Packets
What is the probability that over this interval, I
receive exactly 2 packets?

What is the expected number of packets I receive
over this interval?

What is the variance of this number?
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Summary

I Covariance and correlation measure how
independent two RVs are.

I Variance can be expressed and manipulated
in terms of covariance.

I Independent RVs have zero covariance and
zero correlation. However, the converse is
not true!
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