Covariance and Correlation

CS 70, Summer 2019

Lecture 22, 7/31/19

Last Time...
» Variance measures deviation from mean
» Variance is additive for independent RVs

» Use linearity of expectation and indicator
variables

Today:
» Proof that var. is additive for ind. RVs

» Talk about covariance and correlation

> Some RV practice (if time)

Product of RVs
Let X be a RV with values in A.
Let Y be a RV with values in B.

What does the distribution of XY look like?
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For Independent RVs...

If X and Y are independent, we can show that:
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Variance is Additive for Ind. RVs

If X and Y are independent, we can show that:
ﬂ_var(x +Y) = Var[X] + Var[Y]
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Can You Multiply?
If X and Y are independent, then:
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Is the converse true? N0 .
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Covariance 7

Measures “how | dependent” -t.\'NO RVs are. Let

E[X] = w1, and/let E[Y] = C°\l_(¥r_Y)=0
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Example: Coin Flips |

| flip two fair coins.
Let X count the number of heads, and let Y be
an indicator for the first coin being a head.

First, what is XY7? 0 Wy :‘E TY,T™H
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Example: Coin Flips |
What is Cov(X, Y)?
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Properties of Covariance |
If X and Y are independent, then:
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Cov(X, Y) =

Is the converse true? NO-
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Properties of Covariance Il
What happens when we take Cov(X, X)?
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Properties of Covariance ll|

Covariance is bilinear.

Cov(ar Xy + a2 Xz, Y) =
0, CovCxi, Y )+ 0, Cov(Xa, 1)

Cov(X, by Yy + by Ys) =
pCov (XX D+, tov(X,Y,)
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Practice: Bilinearity!
Simplify Cov(3X +4Y,5X — 2Y).
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Example: Coin Flips Il

Same setup: Two fair flips. X is number of
heads, and Y is indicator for the first coin heads.

Recall: Cov(X,Y) =1~

Now, let Y’ be an indicator for the first coin being
a tail. How does the covariance change?

Cov (%, Y)Y = Cov(X,A-Y)
Observe: Y4Y=1 = L (x, 1)~ Cov(x.Y)
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Properties of Covariance IV

For any two RVs X, Y:

Var(X + Y) = CoV(X+Y , %%Y)
Cov (%, Y4Y) + Qv (Y, XtY)
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Break

If you could eliminate one food so that no one
would eat it ever again, what would you pick to
destroy?
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For any two RVs X, Y that are not constant:

Corr(X, Y) = cov(X,Y)
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What is Corr(X, X) Hm)z

What is Corr(X, —=X)? 4

What is Corr(X, Y) for X, Y independent? Q
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Example: Coin Flips I\

| flip two fair coins.
Let X count the number of heads, and let Y be
an indicator for the first coin being a head.
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Size of Correlation?
For any RVs X and Y that are not constants:

—1<Corr(X,Y)<1

Proof: Define new RVs using X and Y

<X
Il

Size of Correlation?
(Continued:)

RV Practice: Two Roads

There are two paths from Soda to VLSB.

| usually choose a path uniformly at random.

# minutes spent on Path 1 is a Geometric(p;) RV.
# minutes spent on Path 2 is a Geometric(p,) RV.

Today, it took me 6 minutes to walk from Soda
to VLSB. Given this, what is the probability that |
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RV Practice: Two Roads mﬂm\ior\“‘
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RV Practice: RandomSort
| have cards labeled 1,2, ..., n. They are shuffled.

| want them in order. | sort them in a naive way.
| start with all cards in an “unsorted” pile. | draw
cards from the unsorted pile uniformly at random
until | get card 1. | place card 1 in a “sorted”
pile, and continue, this time looking for card 2.
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RV Practice: RandomSort

What is the expected number of draws | need?

What is the variance of the number of draws?
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RV Practice: Packets

Packets arrive from sources A and B.

| fix a time interval. Over this interval, the number
of packets from A and B have Poisson(A4) and
Poisson(Ag) distributions, and are independent.

What is the distribution of the total number of
packets | receive in this time interval?

RV Practice: Packets

What is the probability that over this interval, |
receive exactly 2 packets?

What is the expected number of packets | receive
over this interval?

What is the variance of this number?
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Summary

» Covariance and correlation measure how
independent two RVs are.

» Variance can be expressed and manipulated
in terms of covariance.

» Independent RVs have zero covariance and
zero correlation. However, the converse is
not true!
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