





| Practice: Bilinearity!         Simplify $Cov(3X + 4Y, 5X - 2Y).$                                                 | <b>Example: Coin Flips II</b><br>Same setup: Two fair flips. X is number of heads, and Y is indicator for the first coin heads.<br>Recall: $Cov(X, Y) =$<br>Now, let Y' be an indicator for the first coin being a tail. How does the covariance change? | Properties of Covariance IV<br>For any two RVs X, Y:<br>Var(X + Y) =                                                     |
|------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------|
| ده، ۱۵، ۱۵، ۱۵، ۱۵، ۱۵، ۱۵، ۱۵<br><sub>13/27</sub><br>Break                                                      | Correlation                                                                                                                                                                                                                                              | Example: Coin Flips II<br>I flip two fair coins.                                                                         |
| If you could eliminate one food so that <b>no one</b><br><b>would eat it ever again</b> , what would you pick to | For any two RVs X, Y that are not constant:<br>Corr(X, Y) =<br>Sanity Check!                                                                                                                                                                             | Let X count the number of heads, and let Y be<br>an indicator for the first coin being a head.<br>What is $Corr(X, Y)$ ? |
| destroy?                                                                                                         | What is $Corr(X, X)$ ?<br>What is $Corr(X, -X)$ ?<br>What is $Corr(X, Y)$ for $X, Y$ independent?                                                                                                                                                        |                                                                                                                          |
| <ロト・(費)、< 言)、< 言)、 言、 うく()<br>16/27                                                                              | <ロ> (日)                                                                                                                                                                                                              | <ロト < () + < 三ト < 三ト < 三ト 、 差 ・ 今 Q、()・<br>18/27                                                                         |

| Size of Correlation?                                                | Size of Correlation?                                                                                                                                                                                                                                                   | <b>RV</b> Practice: Two Roads                                                                                         |
|---------------------------------------------------------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|-----------------------------------------------------------------------------------------------------------------------|
| For any RVs X and Y that are <b>not constants</b> :                 | (Continued:)                                                                                                                                                                                                                                                           | There are two paths from Soda to VLSB.<br>I usually choose a path uniformly at random.                                |
| $-1 \leq Corr(X, Y) \leq 1$                                         |                                                                                                                                                                                                                                                                        | # minutes spent on Path 1 is a Geometric( $p_1$ ) RV.                                                                 |
| <b>Proof:</b> Define new RVs using $X$ and $Y$ :                    |                                                                                                                                                                                                                                                                        | # minutes spent on Path 2 is a Geometric( $p_2$ ) RV.                                                                 |
| $egin{array}{lll} 	ilde{X} = \ 	ilde{Y} = \ 	ilde{Y} = \end{array}$ |                                                                                                                                                                                                                                                                        | Today, it took me 6 minutes to walk from Soda<br>to VLSB. Given this, what is the probability that I<br>chose Path 1? |
| <ロ> (日)                         | <ロ><汚りくさり、さ、 そ、 そ、 そ、 のへで<br>20/27                                                                                                                                                                                                                                     | <ロ> (声) (言) (言) (言) (言) (言) (言) (言) (言) (言) (言                                                                        |
| RV Practice: Two Roads                                              | RV Practice: RandomSort                                                                                                                                                                                                                                                | <b>RV</b> Practice: RandomSort                                                                                        |
| Continued:                                                          | I have cards labeled $1, 2, \ldots, n$ . They are shuffled.                                                                                                                                                                                                            | What is the expected number of draws I need?                                                                          |
|                                                                     | I want them in order. I sort them in a naive way.<br>I start with all cards in an "unsorted" pile. I draw<br>cards from the unsorted pile uniformly at random<br>until I get card 1. I place card 1 in a "sorted"<br>pile, and continue, this time looking for card 2. | What is the variance of the number of draws?                                                                          |
| <ロ> (四)> (言)> (言)> (言)> (言)> (言)> (こ)> (こ)> (2)/27<br>22/27         | <ロ・・(例・・ミ・・ミ・ ミージュ()・<br>23/27                                                                                                                                                                                                                                         | (ロ) (の) (こ) (こ) (こ) (こ) (こ) (2) (2) (2) (2) (2) (2) (2) (2) (2) (2                                                    |

| <b>RV</b> Practice: Packets                                                                                                                                                                                                                                                                                                   | RV Practice: Packets                                                                 | Summary                                                                                                                                                                                                  |
|-------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Packets arrive from sources A and B.<br>I fix a time interval. Over this interval, the number<br>of packets from A and B have Poisson( $\lambda_A$ ) and<br>Poisson( $\lambda_B$ ) distributions, and are <b>independent</b> .<br>What is the distribution of the total number of<br>packets I receive in this time interval? | What is the probability that over this interval, I receive <b>exactly</b> 2 packets? | Covariance and correlation measure how<br>independent two RVs are.                                                                                                                                       |
|                                                                                                                                                                                                                                                                                                                               | What is the expected number of packets I receive over this interval?                 | <ul> <li>Variance can be expressed and manipulated<br/>in terms of covariance.</li> <li>Independent RVs have zero covariance and<br/>zero correlation. However, the converse is<br/>not true!</li> </ul> |
|                                                                                                                                                                                                                                                                                                                               | What is the variance of this number?                                                 |                                                                                                                                                                                                          |
| (D) (Ø) (E) (E) E VQQ                                                                                                                                                                                                                                                                                                         | (ロ)(()(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)(2)                                           | <ul><li>(ロ) (問) (注) (注) (注) (注) (注)</li></ul>                                                                                                                                                            |