Concentration

CS 70, Summer 2019

Lecture 23, 8/1/19

Plan:

» Variance measures deviation from mean

» How do we quantify this? Can we get good
bounds even if we don't get an exact

answer? P[X > lEfﬂ* C] 27

» Tools that use mean and variance:

» Markov's Inequality
» Chebyshev's Inequality

» Law of Large Numbers

Trees. (The Non-Graph Kind.)

| plant 10 trees in my yard.
After a few months, | measure their growth. | tell
you that the average height of my trees is 3 ft.

Is it possible that | have 4 trees of 10 ft or taller?
NO.
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Trees. (The Non-Graph Kind.)

| sample any one of my 10 trees.
Let H be the height of my tree.

What can | say about P[H > 10]?
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Markov Inequality

X is a RV that only takes non-negative values.
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Example: Coin Tosses |

| flip 200 fair coins.

What is an upper bound on the probability that
we get more than 150 heads?
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Example: Generalized Markov

Let Y be a arbitrary RV. Let ¢ > 0, r > 0.
Want to show:
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What should we apply Markov to?
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Markov: A Tight Example?
Is it possible that P[X > ¢] = @?
Strategy: Go through proof of Markov.

For every inequality (i.e. >), determine what
would give equality.
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Markov: A Tight Example?
(Continued...)
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Chebyshev Inequality

Let X be an arbitrary RV. ECx]

We have the following bound for two-sided tails:
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Example: Coin Tosses Il
N i
| flip 200 fair coins. H~8in(2m,7)
What is an upper bound on the probability that
we get more than 150 heads?
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Example: Lower Bound on Variance
Let X be a RV such that E[X] =1, and

P[-2< X <3| =
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Can | get a lower bound on Var(X ChebysneN
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Example: Lower Bound on Variance

(Continued...)
L- P[\'C < X< H—C]
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Break

Whats the best Wi-Fi name you've ever seen?

Example: Bias of a Coin

| have a coin with unknown head probability p.
| want to estimate p within some error tolerance
€, and | want to be confldent in %estlmate with

bability 1 —
some probabliy 120 \P[MD p\4£]>

To do this, | flip my coin n times, measure the
number of heads, and divide by n.
~215 an RV
Let p be my estimate.
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Example: Bias of a Coin

What is E[p]? What is Var[p]?
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Example: Bias of a Coin

| want p to be within € (error) of p with <8
probability (confidence) 1 — 4. PR
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Chebyshev: A Tight Example?
Is it possible that P[|X —E[X]| > c] = Var( X)?

Strategy: Go through proof of Chebyshev.
Where do we use inequality (i.e. < or >) instead
of equality?
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Chebyshev: A Tight Example?
(Continued...)

The Law of Large Numbers

Intuition: If we observe a RV X many times, and
average the observations, the average converges
to E[X].

Formally: Let Xi, X5, ... be a sequence of i.i.d.
RVs with expectation p (where u is finite).

Let Sn:X1+X2++Xn Then:
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Visualization: Dice Rolls
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Example: Coin Game

A fair coin is tossed.

1) You win if there are more than 60% heads.

Which is better or 100 tosses?
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2) You win if there are e than 40% heads.
Which is better, 10 o@sses?
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Example: Coin Game

A fair coin is tossed.
1) You win if there are between than 40% and
60% heads. Which is better, 10 o100 tpsses?
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2) You win if there are exactly 50% heads.
Which is better,@r 100 tosses?
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Exactly 50% Heads &yercse.
Compare: Post Loer -

P[n heads out of 2n tosses]
and

P[(n+ 1) heads out of (2n + 2) tosses]




Exactly 50% Heads

(Continued...)

Summary

» Markov helps find one-sided tail probability
for non-negative RVs, given the mea\:ll. \
) ] ® Nd.r'\m S enediC
» Chebyshev helps find two-sided tails for any
RV, given the mean and variance.

» LLN tells us that if we observe a RV many
times, the probability that we are “close”
to the mean nears 1.




