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Plan:

I Variance measures deviation from mean

I How do we quantify this? Can we get good
bounds even if we don’t get an exact
answer?

I Tools that use mean and variance:

I Markov’s Inequality

I Chebyshev’s Inequality

I Law of Large Numbers
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Trees. (The Non-Graph Kind.)
I plant 10 trees in my yard.
After a few months, I measure their growth. I tell
you that the average height of my trees is 3 ft.

Is it possible that I have 4 trees of 10 ft or taller?
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NO
.

avg height =3 ⇒ sum of

heights
= 30

If 4 trees height 210 ⇒ sum 240
.

⇒ ⇐

-

Q : What IS MAX # of trees 210ft ?

③ = 3m
I O #

Trees. (The Non-Graph Kind.)
I sample any one of my 10 trees.
Let H be the height of my tree.

What can I say about P[H � 10]?
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Markov Inequality
X is a RV that only takes non-negative values.

P[X � c ] 

Proof:
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Example: Coin Tosses I
I flip 200 fair coins.
What is an upper bound on the probability that
we get more than 150 heads?
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H = # heads

HN Bin ( 200,4 )

too it non
- neg✓

⇒ use Markov .
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Example: Generalized Markov
Let Y be a arbitrary RV. Let c > 0, r > 0.
Want to show:

P[|Y | � c ]  E[|Y |r ]
cr

What should we apply Markov to?
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Can't apply to Y
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Markov: A Tight Example?
Is it possible that P[X � c ] = E[X ]

c ?

Strategy: Go through proof of Markov.
For every inequality (i.e. �), determine what
would give equality.
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Markov: A Tight Example?
(Continued...)
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Chebyshev Inequality

Let X be an arbitrary RV.
We have the following bound for two-sided tails:

P[|X � µ| � c ] 
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Example: Coin Tosses II
I flip 200 fair coins.
What is an upper bound on the probability that
we get more than 150 heads?
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H - Bin ( 200 , 'T)

what
④ Observe : H 's distribution
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Example: Lower Bound on Variance
Let X be a RV such that E[X ] = 1, and

P[�2 < X < 3] =
1

2

Can I get a lower bound on Var(X )?
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Example: Lower Bound on Variance
(Continued...)
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Break

Whats the best Wi-Fi name youve ever seen?
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Example: Bias of a Coin
I have a coin with unknown head probability p.
I want to estimate p within some error tolerance
✏, and I want to be confident in my estimate with
some probability 1� �.

To do this, I flip my coin n times, measure the
number of heads, and divide by n.

Let p̂ be my estimate.
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← estimate

↳ Pflp - Pk E ] > I - S

→ IS an RV

Let Xi : indicator for im can Heads
.

§ =
Xi+Xz-...tXn

n

Example: Bias of a Coin

What is E[p̂]? What is Var[p̂]?
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Example: Bias of a Coin
I want p̂ to be within ✏ (error) of p with
probability (confidence) 1� �.
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Chebyshev: A Tight Example?
Is it possible that P[|X � E[X ]| � c ] = Var(X )

c ?

Strategy: Go through proof of Chebyshev.
Where do we use inequality (i.e.  or �) instead
of equality?

18 / 27

2

Exercise .



Chebyshev: A Tight Example?
(Continued...)
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The Law of Large Numbers
Intuition: If we observe a RV X many times, and
average the observations, the average converges
to E[X ].

Formally: Let X1,X2, . . . be a sequence of i.i.d.
RVs with expectation µ (where µ is finite).

Let Sn = X1 + X2 + . . . + Xn. Then:

P[|1
n
· Sn � µ| < ✏]! 1 as n !1
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partial
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Visualization: Dice Rolls
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Example: Coin Game
A fair coin is tossed.
1) You win if there are more than 60% heads.
Which is better, 10 or 100 tosses?

2) You win if there are more than 40% heads.
Which is better, 10 or 100 tosses?
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Example: Coin Game
A fair coin is tossed.
1) You win if there are between than 40% and
60% heads. Which is better, 10 or 100 tosses?

2) You win if there are exactly 50% heads.
Which is better, 10 or 100 tosses?
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Exactly 50% Heads
Compare:

P[n heads out of 2n tosses]

and

P[(n + 1) heads out of (2n + 2) tosses]
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Exercise .

Post Later .



Exactly 50% Heads
(Continued...)
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Summary

I Markov helps find one-sided tail probability
for non-negative RVs, given the mean.

I Chebyshev helps find two-sided tails for any
RV, given the mean and variance.

I LLN tells us that if we observe a RV many
times, the probability that we are “close”
to the mean nears 1.
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