

	Whats the best Wi-Fi name youve ever seen?	To do this, I flip my coin <i>n</i> times, measure the number of heads, and divide by <i>n</i> . Let \hat{p} be my estimate.
Example: Bias of a Coin What is $\mathbb{E}[\hat{p}]$? What is $Var[\hat{p}]$?	Example: Bias of a Coin I want \hat{p} to be within ϵ (error) of p with probability (confidence) $1 - \delta$.	Chebyshev: A Tight Example? Is it possible that $\mathbb{P}[X - \mathbb{E}[X] \ge c] = \frac{\operatorname{Var}(X)}{c^2}$? Strategy: Go through proof of Chebyshev. Where do we use inequality (i.e. \le or \ge) instead of equality?

Example: Coin Game

A fair coin is tossed. 1) You win if there are more than 60% heads. Which is better. 10 or 100 tosses?

2) You win if there are more than 40% heads. Which is better. 10 or 100 tosses?

(ロ) (部) (音) (音) (音) (音) (名) 22 / 26

The Law of Large Numbers

Intuition: If we observe a RV X many times, and **average** the observations, the average **converges** to $\mathbb{E}[X]$.

Formally: Let X_1, X_2, \ldots be a sequence of i.i.d. RVs with expectation μ (where μ is finite).

Let
$$S_n = X_1 + X_2 + \ldots + X_n$$
. Then:
 $\mathbb{P}[|\frac{1}{n} \cdot S_n - \mu| < \epsilon] \to 1 \text{ as } n \to \infty$

20/26

< □ ▶ < ∰ ▶ < 분 ▶ < 분 ▶ 분 - 옛 < @ 23/26

Example: Coin Game

A fair coin is tossed. 1) You win if there are between than 40% and 60% heads. Which is better. 10 or 100 tosses?

2) You win if there are **exactly** 50% heads. Which is better. 10 or 100 tosses?

Compare:

 $\mathbb{P}[n \text{ heads out of } 2n \text{ tosses}]$

and

 $\mathbb{P}[(n+1) \text{ heads out of } (2n+2) \text{ tosses}]$

Exactly 50% Heads	Summary
(Continued)	 Markov helps find one-sided tail probability for non-negative RVs, given the mean. Chebyshev helps find two-sided tails for any RV, given the mean and variance.
	 LLN tells us that if we observe a RV many times, the probability that we are "close" to the mean nears 1.
(口)(同)(定	(2) そうへの (ロ) (の) (2) (2) を のへの