Concentration

CS 70, Summer 2019

Lecture 23, 8/1/19

< □ > < @ > < 글 > < 글 > < 글 > 글 の Q ↔ 1/27

Plan:

- Variance measures deviation from mean
- How do we quantify this? Can we get good bounds even if we don't get an exact answer?
 P[X ≥ E[X]+C] ??
- Tools that use **mean** and **variance**:
 - Markov's Inequality
 - Chebyshev's Inequality
 - Law of Large Numbers

Trees. (The Non-Graph Kind.)

I plant 10 trees in my yard.

After a few months, I measure their growth. I tell you that the average height of my trees is 3 ft.

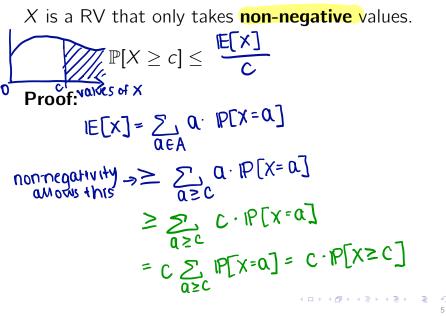
Is it possible that I have 4 trees of 10 ft or taller? avg herght=3 ⇒ Sum of heights = 30 If q trees height≥10 ⇒ Sum≥40. → NO. Q: what is max to of trees >10 ft? $(3) = \frac{30 < sum}{10^{-\#}}$

Trees. (The Non-Graph Kind.)

I sample any one of my 10 trees. Let H be the height of my tree.

What can I say about $\mathbb{P}[H \ge 10]$? IP[H≥10] < Max poss # of ≥10ft trees # an trees. sum heights # all trees sum height avg heig # all trees

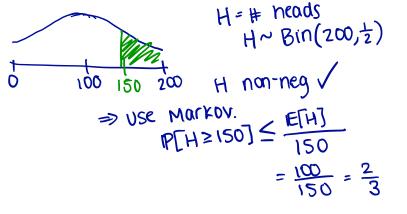
Markov Inequality



^{5/27}

Example: Coin Tosses I

I flip 200 fair coins. What is an **upper bound** on the probability that we get more than 150 heads?



Example: Generalized Markov

Let Y be a **arbitrary** RV. Let c > 0, r > 0. Want to show:

$$\mathbb{P}[|Y| \ge c] \le \frac{\mathbb{E}[|Y|^r]}{c^r}$$

What should we apply Markov to? Cari apply to Y. Can apply to $|Y|^r$ V $P[|Y|^r \ge c^r] \le \frac{E[|Y|^r]}{c^r}$ $P[|Y|^2c]$ if roo.

Markov: A Tight Example?

Is it possible that $\mathbb{P}[X \ge c] = \frac{\mathbb{E}[X]}{c}$?

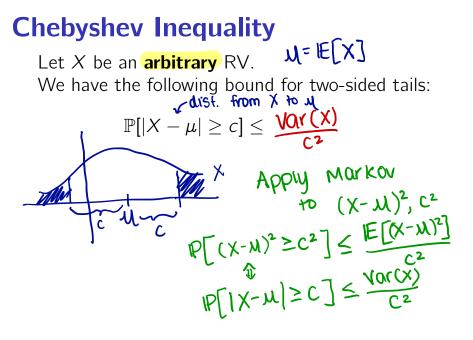
Strategy: Go through proof of Markov. For every **inequality** (i.e. \geq), determine what would give **equality**.

 $E[X] = \sum_{a \in A} a \cdot P[X = a]$ $X \text{ (anif)} = \sum_{a \geq c} a \cdot P[X = a]$ $X = \begin{cases} 0 \text{ (wp 1-p.)} \\ 0 \geq c \end{cases}$ $X = \begin{cases} 0 \text{ (wp 1-p.)} \\ 0 \geq c \end{cases}$ $X = \begin{cases} 0 \text{ (wp 1-p.)} \\ 0 \neq c \end{cases}$ $X = \begin{cases} 0 \text{ (wp 1-p.)} \\ 0 \neq c \end{cases}$ $X = \begin{cases} 0 \text{ (wp 1-p.)} \\ 0 \neq c \end{cases}$ E (x or p p) E (x or p)

Markov: A Tight Example?

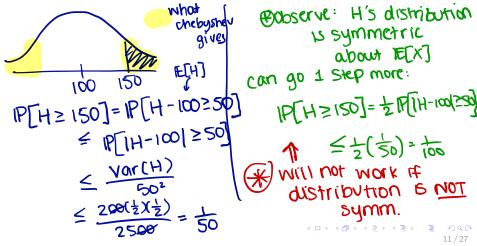
(Continued...)

no reed space



Example: Coin Tosses II

I flip 200 fair coins. $H \sim Bin(200, \pm)$ What is an **upper bound** on the probability that we get more than 150 heads?



Example: Lower Bound on Variance

Let X be a RV such that $\mathbb{E}[X] = 1$, and

$$\mathbb{P}[-2 < X < 3] = \frac{1}{2}$$

Can I get a lower bound on Var(X)? Chebyshev Var(X) $C^2 \ge |P[|X-1|\ge C] \in$ $\Im X-1\ge C \quad \textcircled{O}-(X-1)\ge C$ $x\ge C+1 \quad X\le 1-C$ $1+C\le X, \quad X\le 1-C$ $1+C\le X, \quad X\le 1-C$ 1+C< X< 1+C]

Example: Lower Bound on Variance (Continued...) 1 - IP[I - C < X < I + C] Know: $IP[-2 < X < 3] = \frac{1}{2}$ Choose C carefully: C = 2 $1 - IP[-1 < X < 3] \ge 1 - IP[-2 < X < 3]$ $\frac{\operatorname{Var}(x)}{4} \ge \frac{1}{2} \Rightarrow \operatorname{Var}(x) \ge 2$

Whats the best Wi-Fi name you've ever seen?

Example: Bias of a Coin

I have a coin with **unknown** head probability *p*. I want to **estimate** *p* within some **error tolerance** ϵ , and I want to be **confident** in my estimate with some probability $1 - \delta$. $\Rightarrow P[| \hat{p} - p| \leq \varepsilon] > 1 - \delta$

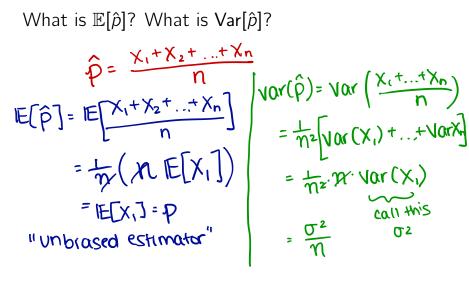
To do this, I flip my coin n times, measure the number of heads, and divide by n.

>15 an RV

Let \hat{p} be my estimate.

Let $X_i = indicator$ for ith coin Heads $\hat{P} = \frac{X_1 + X_2 + ... + X_n}{n}$

Example: Bias of a Coin



Example: Bias of a Coin I want \hat{p} to be within ϵ (**error**) of p with probability (**confidence**) $1 - \delta$. IP[Ip-p1<E]>1-8 4 complement P[1p-p]≥E]≤8 Using one by shev = $\mathbb{E}[\hat{p}]$ $\mathbb{P}[\hat{p} - p] \ge \mathbb{E}] \le \frac{Var(\hat{p})}{E^2}$ $\frac{\sigma^2}{m\epsilon^2} \leq S \implies m \ge \frac{\sigma^2}{\epsilon^2 S}$ want:

Chebyshev: A Tight Example?

Is it possible that $\mathbb{P}[|X - \mathbb{E}[X]| \ge c] = \frac{\operatorname{Var}(X)}{c^2}$?

Strategy: Go through proof of Chebyshev. Where do we use inequality (i.e. \leq or \geq) instead of equality?

Exercise.

Chebyshev: A Tight Example?

(Continued...)

The Law of Large Numbers

Intuition: If we observe a RV X many times, and **average** the observations, the average **converges** to $\mathbb{E}[X]$.

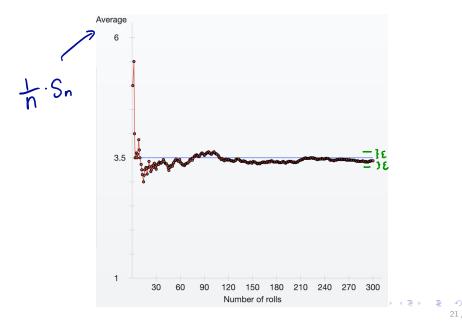
Formally: Let $X_1, X_2, ...$ be a sequence of i.i.d. RVs with expectation μ (where μ is finite).

Let
$$S_n = X_1 + X_2 + \ldots + X_n$$
. Then:
partial $\mathbb{P}\left[\frac{1}{n} \cdot S_n - \mu\right] < \epsilon \rightarrow 1$ as $n \to \infty$
partial partial

20/27

イロト イヨト イヨト イヨト 三日

Visualization: Dice Rolls



Example: Coin Game

A fair coin is tossed. 1) You win if there are more than 60% heads. Which is better, 10 or 100 tosses? For Varger n $P[\frac{9}{400} \ge 60\%] \rightarrow 0$

2) You win if there are more than 40% heads. Which is better, 10 or 100 tosses?

P[heods≥ 4070] → 1

・ロト ・四ト ・ヨト ・ ヨ

Example: Coin Game

A fair coin is tossed 1) You win if there are between than 40% and 60% heads. Which is better, 10 or 100 tosses? $P[409, \le 70, \le 609,] \to 1$ 2) You win if there are **exactly** 50% heads. Which is better, (10) r 100 tosses? ILN deals w/ an interval 100 coms: 10 coins: 40%-60% 403 - 60% 40-60 =)4-6

Exactly 50% Heads Exercise. Compare: Post Later.

$\mathbb{P}[n \text{ heads out of } 2n \text{ tosses}]$

and

 $\mathbb{P}[(n+1) \text{ heads out of } (2n+2) \text{ tosses}]$

Exactly 50% Heads

(Continued...)

Summary

- Markov helps find one-sided tail probability for non-negative RVs, given the mean.
 Not al works symmetric!
- Chebyshev helps find two-sided tails for any RV, given the mean and variance.
- LLN tells us that if we observe a RV many times, the probability that we are "close" to the mean nears 1.