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Plan:

» Variance measures deviation from mean

» How do we quantify this? Can we get good
bounds even if we don't get an exact

answer? ‘P[X 2 g[X]t c]??

» Tools that use mean and variance:

» Markov's Inequality
» Chebyshev's Inequality

» Law of Large Numbers
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Trees. (The Non-Graph Kind.)

| plant 10 trees in my yard.
After a few months, | measure their growth. | tell

you that the average height of my trees is 3 ft.
Is it possible that | have 4 trees of 10 ft or taller?
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Trees. (The Non-Graph Kind.)

| sample any one of my 10 trees.
Let H be the height of my tree.

What can | say about P[H > 10]?
lP[H > \O] < [(NOX posS # o 20 trees
YT % oM frees.
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Markov Inequality

X is a RV that only takes non-negative values.
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Example: Coin Tosses |

| flip 200 fair coins.
What is an upper bound on the probability that
we get more than 150 heads?
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Example: Generalized Markov

Let Y be a arbitrary RV. Let ¢ >0, r > 0.
Want to show:
E[l Y]]
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What should we apply Markov to?
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Markov: A Tight Example?

s it possible that P[X > c] = &CX]?

Strategy: Go through proof of Markov.
For every inequality (i.e. >), determine what
would give equality.
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Markov: A Tight Example?

(Continued...)
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Chebyshev Inequality

Let X be an arbitrary RV. ' lE[X]

We have the following bound for two-sided tails:
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Example: Coin Tosses Il

: L
| flip 200 fair coins. H~in(2m,7
What is an upper bound on the probability that
we get more than 150 heads?
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Example: Lower Bound on Variance
Let X be a RV such that E[X] =1, and

1
IP’[—2<X<3]:§

Can | get a lower bound on Var(X)?  ChebysneN
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Example: Lower Bound on Variance
(Continued...)
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Break

Whats the best Wi-Fi name you've ever seen?
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Example: Bias of a Coin

| have a coin with unknown head probability p.

| want to estimate p within some error tolerance
€, and | want to be confident in m¥\est|mate with
some probability 1 — 9.

G lP[\JP'«PVﬁ}
To do this, | flip my coin n times, measure the

number of heads, and divide by n.

~2\S an RV
Let p be my estimate.
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Example: Bias of a Coin

What is E[p]? What is Var[p]?
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Example: Bias of a Coin
| want p to be within € (error) of p with £3
probability (confidence) 1 — ¢. .
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Chebyshev: A Tight Example?

ls it possible that P[|X — E[X]| > ¢] = Y X)?

Strategy: Go through proof of Chebyshev.
Where do we use inequality (i.e. < or >) instead
of equality?

ExerUL.



Chebyshev: A Tight Example?

(Continued...)



The Law of Large Numbers

Intuition: If we observe a RV X many times, and
average the observations, the average converges
to E[X].

Formally: Let X;, X5, ... be a sequence of i.i.d.
RVs with expectation u (where  is finite).

Let S, = X1+ X5+ ...+ X,. Then:
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Visualization: Dice Rolls
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Example: Coin Game

A fair coin Is tossed.
1) You win if there are more than 60% heads.
Which is better or 100 tosses?
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2) You win if there are e than 40% heads.
Which is better, 10 o@sses?
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Example: Coin Game

A fair coin Is tossed.
1) You win if there are between than 40% and
60% heads. Which is better, 10 o100 tpsses?

09,47 £60% 4 >1
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2) You win if there are exactly 50% heads.
Which is better,@r 100 tosses?
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Exactly 50% Heads &xer¢ise.
Compare: Post Loder -

P[n heads out of 2n tosses]
and

P[(n + 1) heads out of (2n+ 2) tosses|



Exactly 50% Heads

(Continued...)



Summary

» Markov helps find one-sided tail probability
for non-negative RVs, given the mean.
® Nor | aw mmc‘«\c\
» Chebyshev helps find two-sided tails for any
RV, given the mean and variance.

» LLN tells us that if we observe a RV many
times, the probability that we are “close”
to the mean nears 1.



