Intro to Continuous RVs

CS 70, Summer 2019

Lecture 24, 8/5/19

ロト 4度ト 4 きト 4 きト き りへ(

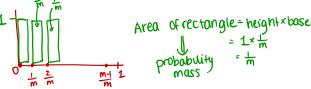
A Discrete Approximation

Let's "approximate" X, a uniform RV over [0, 1]:

Choose integer m. Take m points "uniformly" in (0.1) X_m take values: $0, \frac{1}{m}, \frac{2}{m}, \dots, \frac{m-1}{m}$ Each value has probability: \bot

$$PMF_{X_m}(a) = \begin{cases} 0 & \text{if } a \neq \frac{1}{m}, \text{ for } i = 0, 1, ..., m-1 \\ \frac{1}{m} & \text{else} \end{cases}$$

$$Aren & \text{of cectangle = height x basis}$$



So Far: The PMF

Every discrete distribution we've seen so far has a **probability mass function**.

For RV X:

$$\mathsf{PMF}_X(a) = \mathbb{P}[X = a]$$

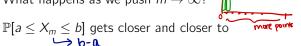
a can be any real number. PMF_X is nonzero on... all values that X takes

Example:

Let $X \sim \text{Geometric}(p)$. Then, $PMF_X(a)$ is: $PMF_X(a) = \begin{cases} 0 & \text{if a is not positive integer} \\ (I-p)^{a-1}p & \text{else} \end{cases}$

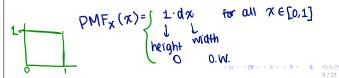
A Discrete Approximation Hinner rectangles

What happens as we push $m \to \infty$?



Width of each rectangle approaches 0.

If we attempt to write a PMF for X.



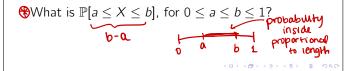
Uniform Over [0, 1]

What if *X* takes **uncountably** many values?

Example: I want X to be uniform over [0, 1]. "Each $a \in [0, 1]$ equally likely."

What is
$$\mathbb{P}[X=0]$$
? 0. One out of uncountably many #5

What is $\mathbb{P}[X = 0.5]$?



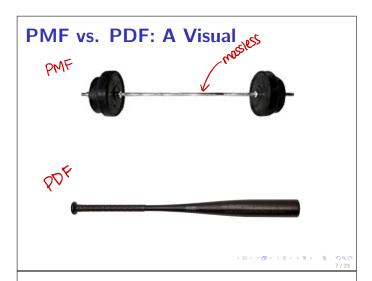
The PDF / "Density"

Drop the dx!

The **probability density function** (PDF) for X is a function $f: \mathbb{R} \to \mathbb{R}$ such that:

- 1. $f(x) \ge 0$ for all $x \in \mathbb{R}$. Discrete Analogue: all probabilities are non-neg.
- 2. $\int_{-\infty}^{\infty} f(x) dx = 1$. Discrete Analogue: all probabilities sum to 1.

$$\mathbb{P}[a \le X \le b] = \int_{a}^{b} f(x) dx \text{ width}$$
Discrete Analogue:
$$\sum_{i=a}^{b} P[X=i]$$



Not Too Different From Discrete I

Continuous RV:

Discrete RV:

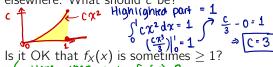
$\mathbb{E}[X] = \sum_{a \in A} a \cdot \mathbb{P}[X = a] \quad \mathbb{E}[X] = \int_{-\infty}^{\infty} \underbrace{\chi \cdot f_{\chi}(x) dx}_{\text{"P}[\chi = 0]}$

$$\mathbb{E}[X^2] = \sum_{a \in A} a^2 \cdot \mathbb{P}[X = a] \quad \mathbb{E}[X^2] = \int_{-\infty}^{\infty} \frac{\chi^2}{\alpha^2} \cdot f_{\chi}(x) dx$$

$$Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 | Var(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2$$

Fun With PDF I

Let X be a RV with PDF cx^2 over [0, 1], zero elsewhere. What should c be?

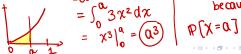


Is it OK that $f_X(x)$ is sometimes ≥ 1 ?

Here, when x=1, $f_X(x)=3$.

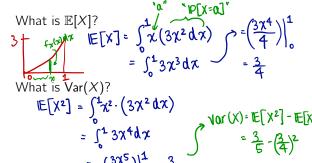
Yes, $f_X(x) \approx P[X \in (x, x+dx)]$, drop dx

For
$$a \in [0, 1]$$
, what is $\mathbb{P}[X \le a]$? $\mathbb{P}[X < a]$? $\mathbb{P}[X \le \alpha] = \int_{-\alpha}^{\alpha} f_X(x) dx$ $| \mathbb{P}[X \le \alpha] = \alpha^3$



Fun With PDF II

Let X have PDF $3x^2$ over [0, 1], zero elsewhere.



The CDF

The **cumulative distribution function** of X is:

$$F_X(x) = \mathbb{P}[X \leq x] = \int_{-\infty}^{\infty} f_X(y) dy$$

If I know the CDF, how do I recover the PDF?

$$f_X(x) = \frac{d}{dx} (F(x))$$
 Sanity check:

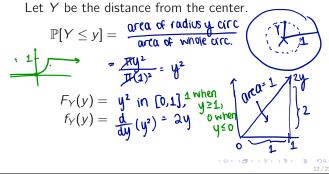
 $F_X(x)=1$ 2) can the CDF

change in CDF be decreasing = pink $\approx t^{x}(x)qx$

Fun With CDF: Dartboard

The CDF is often easier than the PDF!

I hit a random location on a circle, radius 1.



The Exponential RV

The continuous analogue of Geometric(p) RV. We say X is an **exponential RV** if:

$$f_X(x) = \lambda e^{-\lambda x} \text{ if } \chi \ge 0$$
What is $\mathbb{P}[X \ge x]$ for $x \ge 0$?
$$\int_{x}^{\infty} \lambda e^{-\lambda x} dx$$

$$= (-e^{-\lambda x})|_{x}^{\infty} = 0 - (-e^{-\lambda x}) = e^{-\lambda x}$$
What is $F_X(x)$?
$$\sum_{x} \mathbb{P}[X \le x]$$

$$= 1 - \mathbb{P}[X \ge x] = 1 - e^{-\lambda x}$$

Break

What subjects should be taught in school but aren't?

The Exponential RV

What is $\mathbb{E}[X]$? (Two Options)

What is Var(X)? Hard to avoid IBP. (In general, we avoid making you do IBP.) Notes Exercise.

Not Too Different From Discrete II

Discrete RV:

Tail Sum:

$$\mathbb{E}[X] = \sum_{i=1}^{\infty} \mathbb{P}[X \ge i]$$

Markov. Chebyshev Inequalities

Continuous RV:

Tail Sum:

For X on non-neg. ints: For X on non-neg reals:

$$\mathbb{E}[X] = \sum_{i=1}^{\infty} \mathbb{P}[X \ge i] \qquad \mathbb{E}[X] = \int_{0}^{\infty} \mathbb{P}[X \ge x] dx$$

Markov, Chebyshev Inequalities 1 Homorrow

Not Too Different From Discrete III

Discrete RV:

Joint PMF:

$$\mathsf{PMF}_{X,Y}(x,y) = \mathbb{P}[X = x, Y = y]$$

Continuous RV:

Joint PDF:

Joint Density

A func. $f: \mathbb{R}^2 \to \mathbb{R}$ is a **joint density** for X, Y if:

- 1. $f(x,y) \ge 0$ for all $x, y \in \mathbb{R}$. Discrete Analogue: $\Pr[\chi = 0, \chi = b] \ge 0$
- 2. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1.$ Discrete Analogue: $\sum_{\mathbf{Q} \in \mathbf{A}} \sum_{\mathbf{b} \in \mathbf{B}} \mathbb{P}[X = \mathbf{Q}, \mathbf{T} = \mathbf{b}] = 1$

 $\mathbb{P}[a \le X \le b, c \le Y \le d] = \int_{a}^{b} \int_{c}^{d} f(x,y) \, dy \, dx$ Discrete Analogue: $\sum_{i=0}^{b} \sum_{x=c}^{d} \mathbb{F}[X=i,Y=j]$

□ > 4₫ > 4ē > 4ē > ē • 9 Q (**

Not Too Different From Discrete IV

We'll work with this more tomorrow...

Discrete RV:

X and Y are independent iff for all a, b:

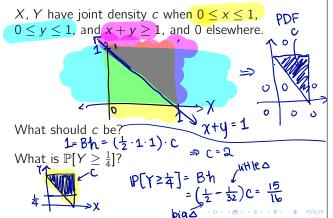
$$\mathbb{P}[X = a, Y = b] = \mathbb{P}[X = a] \cdot \mathbb{P}[Y = b]$$

Continuous RV:

X and Y are independent iff for all $a \le b$, $c \le d$:

$$\mathbb{P}[a \le X \le b, c \le Y \le d] =$$

Fun With Joint Density!



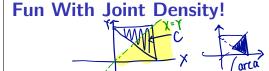
A Note on Independence

For continuous RVs, what is weird about the following?

$$\mathbb{P}[X = a, Y = b] = \mathbb{P}[X = a] \cdot \mathbb{P}[Y = b]$$

What we **can** do: consider a interval of length dx around a and b!





What is $\mathbb{P}[X > Y]$? $\mathbb{P}[X > Y] = \mathbb{B}h = \frac{1}{4}$.

What is $\mathbb{P}[X \leq x]$? $f_X(x)$?

Summary

- Uses a probability density. Important events are intervals rather than particular values.
- ► Almost everything is **analogous to the discrete**! (Expectation, variance, inequalities, tail sum, joint distribution, independence)
- ► Sometimes, expectation and variance are easier to compute for continuous RVs!
- ➤ Tomorrow: more practice with independence, the exponential RV, conditioning...