Intro to Continuous RVs

CS 70, Summer 2019

Lecture 24, 8/5/19

So Far: The PMF

Every discrete distribution we've seen so far has a
probability mass function.

For RV X:

PMFx(a) = P[X = a]

a can be any real number.
PMFx is nonzero on... a\\ yoaues ok X YOKES

Example:
Let X ~ Geometric(p). Then, PMFx(a) is:
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Uniform Over [0, 1]

What if X takes uncountably many values?

Example: | want X to be uniform over [0, 1].
“Each a € [0, 1] equally likely.”

What is P[X = 0]? 0.  On¢ W s vncowndably

many #S,
What is P[X =0.5]7

@®Whatis Pla< X < p],for0<a<bh<1?
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A Discrete Approximation

Let's “approximate” X, a uniform RV over [0, 1]:
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What happens as we push m — 00?

A Discrete Approximation m/w\mw
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Pla < X, < b] gets closer and closer to ) e e

— b-0
Width of each rectangle approaches 0.

In calculus, ap infinitesimally small width is also
known as: @ @S\m\\ﬂ! o R‘“““m sum appeox
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If we attempt to write a PMF for X.
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The PDF / “Density”

Drop the dx!

The probability density function (PDF) for X is
a function f : R — R such that:

1. f(x) >0 for all x € R,
Discrete Analogue: o)) pﬂ)b&bi\mtb are m“'“ej

2. [7 f(x)dx = 1. fes sum to L
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PMF vs. PDF: A Visual 65
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Fun With PDF |

Let X be a RV with PDF cx? over [0, 1], zero
elsewhere. What should ¢ be?
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Is it OK that fx(x) is sometimes > 17

Herg, when x=t, £,00:=3,

> Yes. £x0)® PLXE (x,x+dx)],4rop dox
For a € [0, 1], what is P[X < a]? P[X < a]?

Plxcal= X se(0dx | PIx<a]= o3
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Not Too Different From Discrete | Fun With PDF 11 The CDF Sl
. . Let X have PDF 3x2 over [0, 1], zero elsewhere. The cumulative distribution functl‘él of X is:%
Discrete RV: Continuous RV: -0 o[ X )" Jinpus mpu
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Fun With CDF: Dartboard
The CDF is often easier than the PDF!

| hit a random location on a circle, radius 1.
Let Y be the distance from the center.
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Break

What subjects should be taught in school but
aren't?

Not Too Different From Discrete |l

Discrete RV: Continuous RV:
Tail Sum: Tail Sum:
For X on non-neg. ints: | For X on non-neg reals:

E[X] = ;P[X >i | EX] = S\P[xzx] ax

Markov, Chebyshev

Inequalities T
+oMorrow

Markov, Chebyshev
Inequalities
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The Exponential RV

The continuous analogue of Geometric(p) RV.

We say X is an exponential RV if:
by

A(x)= N x20

0 R\Se 5%
What is P[X > x] for x > 07 \/@
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What is Fx(x)?
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The Exponential RV
What is E[X]? (Two Options)
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What is Var(X)? Hard to avoid IBP. E
(In general, we avoid making you do IBP.)
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Not Too Different From Discrete |1l

Discrete RV:
Joint PMF:

PMFx yv(x,y) =P[X =x,Y =y]

Continuous RV:
Joint PDF:

fxy(x. y) 8PX € (x, x+dx), Y € (y.y+ dy)]
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Joint Density
A func. f : R? — Ris a joint density for X, Y if:

1. f(x,y) >0 for all x,y € R.
Discrete Analogue: P{}@O\,\(‘b] 20

2. [% 7 f(x.y)dxdy = 1.
Discrete Analogue: ) 2 PD(:Q,T: b] -1
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Pla<X<bc<y<d= (° fcd{:(fx,g) dydx

Fun With Joint Density!

X, Y have joint density ¢ when 0 < x <1, DF
0<y<1, an‘c_j_" + y Z, 1, apd 0 elsewhere. v
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1-Bh=(5-11)¢C

Fun With Joint Density!
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What is P[X < x]? fx(x)?
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Not Too Different From Discrete IV A Note on Independence Summary

We'll work with this more tomorrow...

Discrete RV:
X and Y are independent iff for all a, b:

P[X =a, Y = b = P[X = a] - P[Y = b]

Continuous RV:
X and Y are independent iff for all a < b, ¢ < d:

Pla< X <bc<Y<d=

For continuous RVs, what is weird about the
following?

P[X =a, Y = b = P[X = a] - P[Y = b]

What we can do: consider a interval of length dx
around a and b!

» Uses a probability density. Important events
are intervals rather than particular values.

» Almost everything is analogous to the
discrete! (Expectation, variance, inequalities,
tail sum, joint distribution, independence)

» Sometimes, expectation and variance are
easier to compute for continuous RVs!

» Tomorrow: more practice with
independence, the exponential RV,
conditioning...




