Intro to Continuous RVs

CS 70. Summer 2019

Lecture 24, 8/5/19

A Discrete Approximation

Let's "approximate" X, a uniform RV over [0, 1]:

Choose integer *m*. X_m take values: Each value has probability:

```
PMF_X(a) =
```

So Far: The PMF

Every discrete distribution we've seen so far has a probability mass function.

For RV X:

 $\mathsf{PMF}_X(a) = \mathbb{P}[X = a]$

a can be any real number. PMF_X is nonzero on...

Example: Let $X \sim \text{Geometric}(p)$. Then, $\text{PMF}_X(a)$ is:

A Discrete Approximation

What happens as we push $m \to \infty$?

 $\mathbb{P}[a \leq X_m \leq b]$ gets closer and closer to

Width of each rectangle approaches 0. In calculus, an infinitesimally small width is also known as:

If we attempt to write a PMF for X.

Uniform Over [0, 1]

What if *X* takes **uncountably** many values?

Example: I want X to be uniform over [0, 1]. "Each $a \in [0, 1]$ equally likely."

What is $\mathbb{P}[X=0]$?

What is $\mathbb{P}[X = 0.5]$?

What is $\mathbb{P}[a \leq X \leq b]$, for $0 \leq a \leq b \leq 1$?

The PDF / "Density"

Drop the dx!

The **probability density function** (PDF) for X is a function $f : \mathbb{R} \to \mathbb{R}$ such that:

1. $f(x) \ge 0$ for all $x \in \mathbb{R}$. Discrete Analogue:

2. $\int_{-\infty}^{\infty} f(x) dx = 1$. Discrete Analogue:

 $\mathbb{P}[a \leq X \leq b] =$ Discrete Analogue:

- + ロト + @ ト + 注 + + 注 - のへ(

6/23

Fun With PDF I Let X be a RV with PDF cx^2 over [0, 1], zero elsewhere. What should c be? Is it OK that $f_X(x)$ is sometimes ≥ 1 ? For $a \in [0, 1]$, what is $\mathbb{P}[X \leq a]$? $\mathbb{P}[X < a]$? The CDF The **cumulative distribution function** of *X* is: $F_X(x) = \mathbb{P}[X \leq x] =$ If I know the CDF, how do I recover the PDF? $f_X(x) =$

(□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (□) < (

Not Too Different From Discrete I

Discrete RV: $\mathbb{E}[X] = \sum_{a \in A} a \cdot \mathbb{P}[X = a] \qquad \mathbb{E}[X] =$ $\mathbb{E}[X^2] = \sum_{a \in A} a^2 \cdot \mathbb{P}[X = a] \qquad \mathbb{E}[X^2] =$ $\operatorname{Var}(X) = \mathbb{E}[X^2] - \mathbb{E}[X]^2 \qquad \operatorname{Var}(X) =$

Fun With CDF: Dartboard

The CDF is often easier than the PDF!

I hit a random location on a circle, radius 1. Let Y be the distance from the center.

 $\mathbb{P}[Y \leq y] =$

 $F_Y(y) = f_Y(y) =$

<ロ><一><一><一><一><一><一><一</th><=><=><</th><=><</th><=><=><=><=><=><=><=><=><=><=><=</th><=><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><=</th><</th><=</th><</th><=</th><=</th><</th><=</th><</th><</th><=</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</th><</t

Break	Not Too Different	From Discrete II	The Exponential RV
What subjects should be taught in school but aren't?	Discrete RV: Tail Sum: For X on non-neg. ints: $\mathbb{E}[X] = \sum_{i=1}^{\infty} \mathbb{P}[X \ge i]$ Markov, Chebyshev Inequalities	Continuous RV: Tail Sum: For X on non-neg reals: $\mathbb{E}[X] =$ Markov, Chebyshev Inequalities	The continuous analogue of Geometric(p) RV. We say X is an exponential RV if: $f_X(x) =$ What is $\mathbb{P}[X \ge x]$ for $x \ge 0$? What is $F_X(x)$?
The Exponential RV	Not Too Different From Discrete III		Joint Density
What is $\mathbb{E}[X]$? (Two Options) What is Var(X)? Hard to avoid IBP. (In general, we avoid making you do IBP.)	Discrete RV: Joint PMF: $PMF_{X,Y}(x, y) =$ Continuous RV: Joint PDF:	$\mathbb{P}[X = x, Y = y]$ $(x + dx), Y \in (y, y + dy)]$	A func. $f : \mathbb{R}^2 \to \mathbb{R}$ is a joint density for <i>X</i> , <i>Y</i> if: 1. $f(x, y) \ge 0$ for all $x, y \in \mathbb{R}$. Discrete Analogue: 2. $\int_{-\infty}^{\infty} \int_{-\infty}^{\infty} f(x, y) dx dy = 1$. Discrete Analogue: $\mathbb{P}[a \le X \le b, c \le Y \le d] =$ Discrete Analogue:
<ロ><ラ><き><き><き><き><き><き><うへで 16/23		(ロ)(の)(さ)(さ)(さ)(さ)(17/23)	<ロ・< の ・<き><き、き、<き、 18/23

Fun With Joint Density!

X, Y have joint density c when $0 \le x \le 1$, $0 \le y \le 1$, and $x + y \ge 1$, and 0 elsewhere.

What should *c* be?

What is $\mathbb{P}[Y \geq \frac{1}{4}]$?

A Note on Independence

For continuous RVs, what is weird about the following?

 $\mathbb{P}[X = a, Y = b] = \mathbb{P}[X = a] \cdot \mathbb{P}[Y = b]$

What we **can** do: consider a interval of length dx around *a* and *b*!

Fun With Joint Density!

What is $\mathbb{P}[X > Y]$?

What is $\mathbb{P}[X \leq x]$? $f_X(x)$?

Summary

- Uses a probability density. Important events are intervals rather than particular values.
- Almost everything is analogous to the discrete! (Expectation, variance, inequalities, tail sum, joint distribution, independence)
- Sometimes, expectation and variance are easier to compute for continuous RVs!
- Tomorrow: more practice with independence, the exponential RV, conditioning...

Not Too Different From Discrete IV

We'll work with this more tomorrow...

Discrete RV: X and Y are independent iff for all *a*, *b*:

 $\mathbb{P}[X = a, Y = b] = \mathbb{P}[X = a] \cdot \mathbb{P}[Y = b]$

Continuous RV: X and Y are independent iff for all $a \le b$, $c \le d$:

 $\mathbb{P}[a \leq X \leq b, c \leq Y \leq d] =$