
Intro to Continuous RVs

CS 70, Summer 2019

Lecture 24, 8/5/19
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So Far: The PMF

Every discrete distribution we’ve seen so far has a
probability mass function.

For RV X :

PMFX (a) = P[X = a]

a can be any real number.
PMFX is nonzero on...

Example:

Let X ⇠ Geometric(p). Then, PMFX (a) is:
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all values that X takes
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p else



Uniform Over [0, 1]
What if X takes uncountably many values?

Example: I want X to be uniform over [0, 1].
“Each a 2 [0, 1] equally likely.”

What is P[X = 0]?

What is P[X = 0.5]?

What is P[a  X  b], for 0  a  b  1?
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A Discrete Approximation

Let’s “approximate” X , a uniform RV over [0, 1]:

Choose integer m.
Xm take values:
Each value has probability:

PMFX (a) =
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A Discrete Approximation

What happens as we push m !1?

P[a  Xm  b] gets closer and closer to

Width of each rectangle approaches 0.
In calculus, an infinitesimally small width is also
known as:

If we attempt to write a PMF for X .
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The PDF / “Density”

Drop the dx !

The probability density function (PDF) for X is
a function f : R! R such that:

1. f (x) � 0 for all x 2 R.
Discrete Analogue:

2.
R1
�1 f (x)dx = 1.
Discrete Analogue:

P[a  X  b] =
Discrete Analogue:
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PMF vs. PDF: A Visual
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Fun With PDF I

Let X be a RV with PDF cx2 over [0, 1], zero
elsewhere. What should c be?

Is it OK that fX (x) is sometimes � 1?

For a 2 [0, 1], what is P[X  a]? P[X < a]?
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Not Too Di↵erent From Discrete I

Discrete RV:

E[X ] =
X

a2A
a · P[X = a]

E[X 2] =
X

a2A
a2·P[X = a]

Var(X ) = E[X 2]�E[X ]2

Continuous RV:

E[X ] =

E[X 2] =

Var(X ) =
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Fun With PDF II

Let X have PDF 3x2 over [0, 1], zero elsewhere.

What is E[X ]?

What is Var(X )?
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The CDF

The cumulative distribution function of X is:

FX (x) = P[X  x ] =

If I know the CDF, how do I recover the PDF?

fX (x) =
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Fun With CDF: Dartboard

The CDF is often easier than the PDF!

I hit a random location on a circle, radius 1.
Let Y be the distance from the center.

P[Y  y ] =

FY (y ) =

fY (y ) =
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Break

What subjects should be taught in school but
aren’t?
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Not Too Di↵erent From Discrete II

Discrete RV:

Tail Sum:
For X on non-neg. ints:

E[X ] =
1X

i=1

P[X � i ]

Markov, Chebyshev
Inequalities

Continuous RV:

Tail Sum:
For X on non-neg reals:

E[X ] =

Markov, Chebyshev
Inequalities

14 / 23

A

JPCXZX] DX:
tomorrow



The Exponential RV

The continuous analogue of Geometric(p) RV.
We say X is an exponential RV if:

fX (x) =

What is P[X � x ] for x � 0?

What is FX (x)?
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The Exponential RV

What is E[X ]? (Two Options)

What is Var(X )? Hard to avoid IBP.
(In general, we avoid making you do IBP.)
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Not Too Di↵erent From Discrete III

Discrete RV:

Joint PMF:

PMFX ,Y (x , y ) = P[X = x ,Y = y ]

Continuous RV:

Joint PDF:

fX ,Y (x , y ) = P[X 2 (x , x + dx),Y 2 (y , y + dy )]
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Joint Density

A func. f : R2 ! R is a joint density for X ,Y if:

1. f (x , y ) � 0 for all x , y 2 R.
Discrete Analogue:

2.
R1
�1

R1
�1 f (x , y )dx dy = 1.

Discrete Analogue:

P[a  X  b, c  Y  d ] =
Discrete Analogue:
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Fun With Joint Density!

X ,Y have joint density c when 0  x  1,
0  y  1, and x + y � 1, and 0 elsewhere.

What should c be?

What is P[Y � 1
4]?
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Fun With Joint Density!

What is P[X > Y ]?

What is P[X  x ]? fX (x)?
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Not Too Di↵erent From Discrete IV

We’ll work with this more tomorrow...

Discrete RV:

X and Y are independent i↵ for all a, b:

P[X = a,Y = b] = P[X = a] · P[Y = b]

Continuous RV:

X and Y are independent i↵ for all a  b, c  d :

P[a  X  b, c  Y  d ] =
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A Note on Independence

For continuous RVs, what is weird about the
following?

P[X = a,Y = b] = P[X = a] · P[Y = b]

What we can do: consider a interval of length dx
around a and b!
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Summary

I Uses a probability density. Important events
are intervals rather than particular values.

I Almost everything is analogous to the
discrete! (Expectation, variance, inequalities,
tail sum, joint distribution, independence)

I Sometimes, expectation and variance are
easier to compute for continuous RVs!

I Tomorrow: more practice with
independence, the exponential RV,
conditioning...
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