Continuous RVs Continued:
Independence, Conditioning,
Gaussians, CLT

CS 70, Summer 2019

Lecture 25, 8/6/19

Not Too Different From Discrete...

Discrete RV:
X and Y are independent iff for all a, b:

PX =a Y =b=PX=a]-P[Y = b
Continuous RV:
X and Y are independent iff for all a < b, ¢ < d:
Pla<X<bc<Y<d=

Plo< x<b]x Ple<Y£d]
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A Note on Independence

For continuous RVs, what is weird about the
following?

P[X =a, Y = b] = P[X = a] - P[Y = b]

L/—\/—_) Vv e
=0 =0 =0

What we can do: consider a interval of length dx
around a and b!
PL¥=0, Y=0) = P x€fo, 0dx],YE b, b+ dn%

= P[x efo, a+dxT) ALY €D, bt
~ (5 (0 dx [ (D) dy)

Independence, Continued
If X, Y are independent, their joint density is the
product of their individual densities:

fxy(x,y)= ‘F)&'X) : ‘F‘( (‘j)

Example: If X, Y are independent exponential
RVs with parameter A:

iy (09) = £x (0 £y(v)
- (?\Q—WXXV\Q-%“)
. e—x(fx*r\))

Example: Max of Two Exponentials

2
20

Let X ~ Expo(A) and Y ~ Expo(wu).
X and Y are independent. o —
Compute P[max(X, Y) > t].
Ls < 1 - Pmox(x, ) £t]
=1 -PLX<t,Y4t]
independene> = L~ P{x< v Pl <t]
mgegg OF - = 1 —g- %)E\-e'*\*)
Use this to compute E[max(X, Y)].
Toi\ Sum - glrox]= ([~ plmox=+] db
~(\T
L e - et

= —

i —
A

st- —> e
Piniegrarion N

5/26

Min of n Uniforms Lmﬁx;zﬂ

0
Let Xy, ..., X, be ii.d. and uniform Sver [0, 1].
% Plag x<b)=ba
What is P[min(X1, . .., Xn) < X]? e )hr 0casbsl
Ly - x@) =71 oves®)
1- P[min2x) {5 o

= 1-P(X,2%,..., *n2 &)

04> - 4 Ly, el P27 q\\m&%mﬂ)
= — \_(X . N
Use this to ((:omp?Jte E[min(Xy, ..., Xl ‘1e)§m%m
Todl Qum: (° "M
M P2 de [
- (L prev mn«ﬂ\ e
= n (E[2"%small
o (1I-0" dx
- =X < 0- (- fm) =+
n+l °




Min of n Uniforms
from
prev.

What is the CDF of min(X, ..., Xn)? sude

Foun (0= Pl € x] = 4-(1-%)"
What is the PDF of min(Xi, ..., X,)?
% (- (=-0m)
Q-0 (- 0" D)
5 e

Memorylessness of Exponential

We can't talk about independence without talking
about conditional probability!

Let X ~ Expo(}). X is memoryless, i.e.

PX > s+ tX > t]=P[X > s]

WS PIXEStBNx>¥T]  Tedundant
o O 0%
Px2stt] oMt ®
PIx>t] QA

= - plxzs)
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Conditional Density

What happens if we condition on events like
X = a? These have 0 probability!

The same story as discrete, except we now need
to define a conditional density:

e )Cmvm’tlmi
X, y(X,y Set Wis 0 O
MOPIZ TR

£y (x)=0.

Think of f(y|x) as
o)

P[Y €[y, y + dy]IX € [x, x + dx]]

Conditional Density, Continued

oy
Given a conditional density fy|)( compute /\H ™
~ PL(=ylx= ‘X]
Em'x*di

Y <yIX =] = J 4“@\»0 dz
If we know P[Y < y|§ = x|, compute

By <y = | \P[\/ég\wﬂ%%%%@u‘“-

T axSurere: CoSe on X! LPL\"W ) Pox=%)
Go with your gut! What worked for discrete also
works for continuous.
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Example: Sum of Two Exponentials

Let X1, Xo be i.i.d Expo()) RVs.
Let Y = X1 + X2.

CDF O &XPO
What is P[Y < y| X1 = x]? @ﬁi’
L 1PD<|+><1<\3 | % =%) rd

= L %<y %)
What is P[Y < y]?
case m \m\ue,s e Kot

S Y4y %= =%} 9\ x]
-5 (1~ ) £ (R

ereiSe.
> (0™ e a.
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Example: Total Probability Rule

What is the CDF of Y7? gyerost

What is the PDF of Y7




Break

If you could immediately gain one new skill, what
would it be?
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The Normal (Gaussian) Distribution

X is a normal or Gaussian RV if:

1 Symm. oloour
/ ’ N\ _ | S /20 s meaq
() omo? -

Parameters: J*, Vi
Notation: X ~ \/(/‘(,\&)Ul)
E[X] = M Var(X) = g2

Standard Normal: J\=0, 02° 1 :C¢b
-1 |9 1
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Gaussian Tail Bound

Let X ~ N(0,1).
Easy upper bound on P[|X| > ], for o > 17
(Something we've seen before...)

Chepyshev: o
\or
PlIx-0\2et)€ ~oa
A
<=
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Gaussian Tail Bound, Continued

Turns out we can do better than Chebyshev.

Idea: Use [° \/%efxzpdx < yj’% Q-?\Vzd%
Plixize]= 2 PLX 2]
2 - 2% ax
o \m

Shaded: \X|Zet )
< Q| X ~*/2 dx
f T ©

-2 fRE el

Shifting and Scaling Gaussians
Let X ~ N (u, @) and Y = %22, Then:

Y ~ A (0,1

Proof: Compute Pla< Y < b].
No/&e_s: oWk & SCope.

Change of variables: x =oy + u.
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Shifting and Scaling Gaussians

Can also go the other direction:

If X ~N(0,1), and Y = pu+ o X:
Y is still Gaussian!

E[Y] = B{M K] = At cr\\;l?ﬁw
=N

Var(Y) = yay (3 toX)= Nor (o)

= g2 \or(X)
)
=4
= D‘l




Sum of Independent Gaussians
Let X, Y be independent standard Gaussians.

Let Z =[aX + c]+ [bY +d].
Then, Z is also Gaussian! (Proof optional.)

B(Z) = E[ax+C by+d]- ABET-bERrT

tctd
= otd

Var(Z) = \jor (X tbY+ C*0)
=\0r (0X+bY) s+
= ~Joc (o) + Yor (bY)
= a2Nor(X) + o Yar(y) = 0t

Example: Height cxeccise

Consider a family of a two parents and twins with
the same height. The parents’ heights are
independently drawn from a N(65, 5) distribution.
The twins' height are independent of the parents’,
and from a N(40, 10) distribution.

Let H be the sum of the heights in the family.
Define relevant RVs:
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Example: Height

E[H] =

Var[H] =
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Sample Mean

We sample a RV X independently n times.

X has mean p, variance o2.

Denote the sample mean by A, = X4X — +Xp
Bl = €[% (x4 %)) 2 (E[X Ve AR
= k) TN

Var(A)f \lo((i (Xt Ka ))
o (Nar )+ +\!0rb<n)]

- wr(?“’l)
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The Central Limit Theorem (CLT)

Let Xi, X5, ..., X, be i.i.d. RVs with mean u,
variance 0. (Assume mean, variance, are finite.)

Sample mean, as before: A, = MZ;—%L
Recall: E[A;] = M
Var(A,) = o

n
Normalize the sample mean: 5“0(‘3&\03\00
normamzdl _ , _ An—M
e n
S0, SAm V) Aa WOV
Then, as n — oo, poloWS &

Te0s100 WOYE [~ 1) duist.
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Example: Chebyshev vs. CLT

Let X1 X2
Var(X ) X1+X2+ +Xn

n

Let A,

. be i.i.d RVs with E[X{] =1 and

E[A)] = 1 éc,xpe_c’romn of sm%lﬂ sample.

varionce oF o Swgle
Var(A,) = UZK_ _\—-—
n A

Normalize to get A’: NOS (A

\b(P\ - ‘EY G’/.ﬁ;&:
Nof (W) = Nor (B

Aq~ E[An]
A ElAn]

ample

TN“)
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Example: Chebyshev vs. CLT

Upper bound P[A}, > 2] for any n.
(We don’t know if Al is non-neg or symmetric.)

PlAa227) < P[|Ax -olz2] < ELA"—Z

E[An] < _%-,_

If we take n — oo, upper bound on P[A, > 2]?
O &owss n m&/
AN

0 P

\Y\lgoo PlAm=2] < conk e NS g2
Y ® 8- NT o o
proaches ot %

J(('(O/i) dJ,S"'- 5 1 00 1 ‘2
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Summary

» Independence and conditioning also
generalize from the discrete RV case.

» The Gaussian is a very important continuous
RV. It has several nice properties, including
the fact that adding independent Gaussians
gets you another Gaussian

» The CLT tells us that if we take a sample
average of a RV, the distribution of this
average will approach a standard normal.




