

Not Too Different From Discrete...

Discrete RV: X and Y are independent iff for all *a*, *b*:

 $\mathbb{P}[X = a, Y = b] = \mathbb{P}[X = a] \cdot \mathbb{P}[Y = b]$

Continuous RV: *X* and *Y* are independent iff for all $a \le b$, $c \le d$:

 $\mathbb{P}[a \le X \le b, c \le Y \le d] = \mathbb{P}[a \le \chi \le b] \times \mathbb{P}[c \le Y \le d]$

2/26

Example: Max of Two Exponentials Let $X \sim Expo(\lambda)$ and $Y \sim Expo(\mu)$. X and Y are independent. Compute $\mathbb{P}[\max(X, Y) \ge t]$. $L \Rightarrow = 1 - IP[\max(X, Y) \le t]$ $in dependents = 1 - IP[X \le t, Y \le t]$ Use this to compute $\mathbb{E}[\max(X, Y)]$. Toil SUM: $\mathbb{E}[\max[X] = \int_{0}^{\infty} IP[\max[X] + e^{-\lambda t} + e^{-\lambda t}] dt$ $= \int_{0}^{\infty} (e^{-\lambda t} + e^{-\lambda t} - e^{-(\lambda t + \lambda)t}) dt$

A Note on Independence

For continuous RVs, what is weird about the following?

$$\mathbb{P}[X = a, Y = b] = \mathbb{P}[X = a] \cdot \mathbb{P}[Y = b]$$

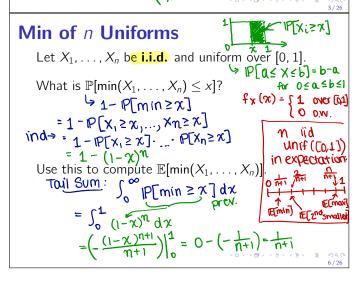
$$= 0$$

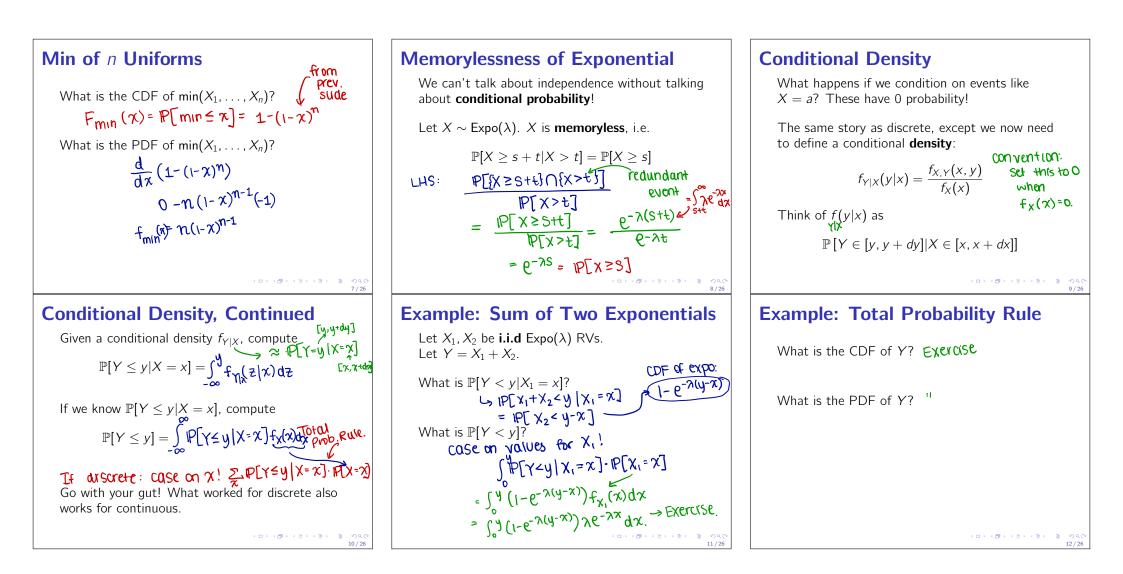
$$= 0$$

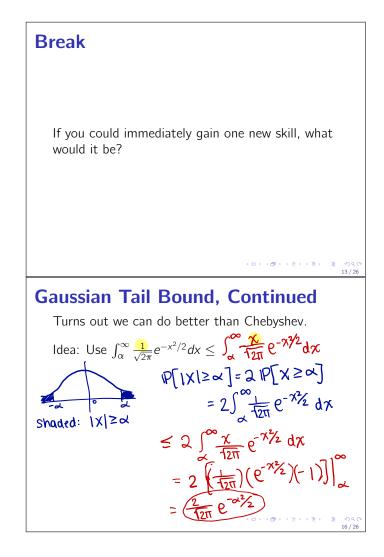
$$= 0$$

What we **can** do: consider a interval of length dx around *a* and *b*!

```
\begin{split} & P[X=a, Y=b] \approx P[X\in[a, a+dx], Y\in[b, b+dy]] \\ &= P[X\in[a, a+dx]]P[Y\in[b, b+dy]] \\ &\approx (f_X(a) d_X)(f_Y(b) d_Y) \end{split}
```





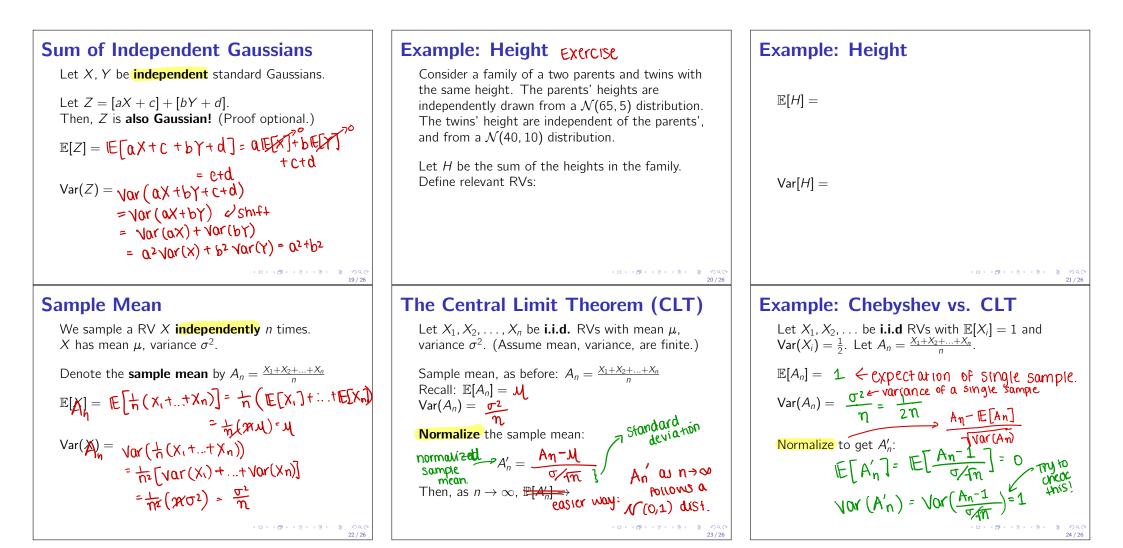


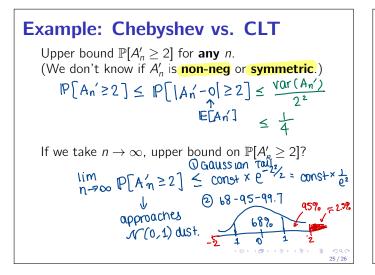
The Normal (Gaussian) Distribution

$$X$$
 is a normal or Gaussian RV if:
 $\begin{array}{c}
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & & \\
 & &$

.

aussian Tail Bound Let $X \sim \mathcal{N}(0, 1)$. Easy upper bound on $\mathbb{P}[|X| \ge \alpha]$, for $\alpha \ge 1$? (Something we've seen before...) chebyshev: $\left(P[|X-0| \ge \alpha] \le \frac{Var(X)}{\alpha^2} \right)$ (日) (母) (さ) (さ) (さ) (つ) 15 / 26 hifting and Scaling Gaussians Can also go the other direction: If $X \sim \mathcal{N}(0, 1)$, and $Y = \mu + \sigma X$: Y is still Gaussian! $\mathbb{E}[Y] = \mathbb{E}[\eta + \sigma X] = \eta + \sigma \mathbb{E}[X]$ = η $Var(Y) = Var(\eta + \sigma X) = Var(\sigma X)$ = $\sigma^2 Var(X)$





Summary

- Independence and conditioning also generalize from the discrete RV case.
- The Gaussian is a very important continuous RV. It has several nice properties, including the fact that adding independent Gaussians gets you another Gaussian
- The CLT tells us that if we take a sample average of a RV, the distribution of this average will approach a standard normal.