Continuous RVs Continued:
Independence, Conditioning,
Gaussians, CLT

CS 70, Summer 2019

Lecture 25, 8/6/19

Not Too Different From Discrete...

Discrete RV:
X and Y are independent iff for all a, b:

PX =a Y =b=PX=a]-PlY = b
Continuous RV:
X and Y are independent iff for all a < b, ¢ < d:

Pla<X<bc<Y<d=

A Note on Independence

For continuous RVs, what is weird about the
following?

P[X =a, Y = b] = P[X = a] - P[Y = b]

What we can do: consider a interval of length dx
around a and b!

Independence, Continued

If X, Y are independent, their joint density is the
product of their individual densities:

fxv(x.y) =

Example: If X, Y are independent exponential
RVs with parameter X:

Example: Max of Two Exponentials

Let X ~ Expo(A) and Y ~ Expo(u).
X and Y are independent.
Compute P[max(X, Y) > t].

Use this to compute E[max(X, Y)].

Min of n Uniforms
Let Xi,..., X, be i.i.d. and uniform over [0, 1].

What is P[min(X1, ..., Xn) < X]7?




Min of n Uniforms

What is the CDF of min(Xy, ..., X,)?

What is the PDF of min(Xi, ..., Xn)?

Memorylessness of Exponential

We can't talk about independence without talking
about conditional probability!

Let X ~ Expo(X). X is memoryless, i.e.

PX >s+tX >t]=P[X > 5]

Conditional Density

What happens if we condition on events like
X = a? These have 0 probability!

The same story as discrete, except we now need
to define a conditional density:

fx.v(x.y)

fyix(vlx) = )

Think of f(y|x) as

P[Y €[y,y + dy]IX € [x, x + dx]]

Conditional Density, Continued

Given a conditional density fy|x, compute

PlY <y|X=x]=

If we know P[Y < y|X = x], compute

PlY <y]=

Go with your gut! What worked for discrete also

works for continuous.

Example: Sum of Two Exponentials

Let X1, X, be i.i.d Expo(\) RVs.
Let Y = X1 + X2.

What is P[Y < y| X1 = x]?

What is P[Y < y]?

Example: Total Probability Rule

What is the CDF of Y?

What is the PDF of Y7




Break

If you could immediately gain one new skill, what
would it be?

The Normal (Gaussian) Distribution

X is a normal or Gaussian RV if:

fx(x) = \/% . e (x—p)?/20?
Parameters:
Notation: X ~
E[X] = Var(X) =

Standard Normal:

Gaussian Tail Bound

Let X ~ N(0,1).
Easy upper bound on P[|X]| > «], for o > 17
(Something we've seen before...)

Gaussian Tail Bound, Continued

Turns out we can do better than Chebyshev.

Idea: Use [° \/%e*XQ/QdXS

Shifting and Scaling Gaussians
Let X ~ N(u,0) and Y = *>£. Then:

YN

Proof: Compute Pla< Y < b].

Change of variables: x =oy + u.

Shifting and Scaling Gaussians

Can also go the other direction:

If X ~N(0,1), and Y = pu+ o X:
Y is still Gaussian!

E[Y] =

Var(Y) =




Sum of Independent Gaussians
Let X, Y be independent standard Gaussians.

Let Z =[aX + c] + [bY +d].
Then, Z is also Gaussian! (Proof optional.)

E[Z] =

Var(Z) =

Example: Height

Consider a family of a two parents and twins with
the same height. The parents’ heights are
independently drawn from a N(65, 5) distribution.
The twins' height are independent of the parents’,
and from a N(40, 10) distribution.

Let H be the sum of the heights in the family.
Define relevant RVs:

Example: Height

E[H] =

Var[H] =

Sample Mean

We sample a RV X independently n times.

X has mean p, variance o2.

_ XX+ X,

Denote the sample mean by A, = -

E[X] =

Var(X) =

The Central Limit Theorem (CLT)

Let X1, X5, ..., X, be i.i.d. RVs with mean u,
variance 0. (Assume mean, variance, are finite.)

X1+ Xo4.. 4 X,

Sample mean, as before: A, = .

Recall: E[A,] =
Var(A,) =

Normalize the sample mean:
/
A, =

Then, as n — oo, P[A]] —

Example: Chebyshev vs. CLT

Let X1, Xo, ... be i.i.d RVs with E[X]] = 1 and
Var(X)) = 3. Let A, = 2ttt

IE[An] =

Var(A,) =

Normalize to get Al:




Example: Chebyshev vs. CLT Summary

UVI?/pe; bO,U”kd P[A/:c iz_] for any n. . » Independence and conditioning also
(We don’t know if A} is non-neg or symmetric.) generalize from the discrete RV case.

» The Gaussian is a very important continuous
RV. It has several nice properties, including
the fact that adding independent Gaussians

If we take n — oo, upper bound on P[A], > 2]7? gets you another Gaussian

» The CLT tells us that if we take a sample
average of a RV, the distribution of this
average will approach a standard normal.




