Continuous RVs Continued:

Independence, Conditioning,
Gaussians, CLT

CS 70, Summer 2019

Lecture 25, 8/6/19
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Not Too Different From Discrete...

Discrete RV:
X and Y are independent iff for all a, b:

P[X =a, Y =b] =P[X =a]-P[Y = b]
Continuous RV:
X and Y are independent iff for all a < b, ¢ < d:
Pla<X<bc<Y<d=

Plag x<blxPle2YZd]
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A Note on Independence
For continuous RVs, what is weird about the

following?

P[X = a,Y = b] = P[X = a] - P[Y = b]
=0 :7(> =0

What we can do: consider a interval of length dx
around a and b!

PL¥=0, Y-0) = B[ x€[o, 0+dx], YE b, b* d%%
= p[xefo,a¢ dx]) P{YELb, bt
~ (5 (@ dx ( (B dy)
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Independence, Continued

If X, Y are independent, their joint density Is the
product of their individual densities:

fxv(x,y) = vc)((')c) ' ‘Fs( (‘j)

Example: If X, Y are independent exponential
RVs with parameter A:

f W) = Fx (0 fy(v)
= (™™
= }{‘Q’N(XW)
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Example: Max of Two Exponentials
’)\Q”WX
Let X ~ Expo(\) and Y ~ E . wihen
e xpo(\) an xpo(L4) ‘\)ﬁo

X and Y are independent. o —
Compute P[max(X, Y) > t].

L < fL - P mox (x,N<1]

= L-PLY<,Y£E]
independenee = 1 - P{x4t]lP[Y<’c]
wWee OF —» = 1 - -2tY | - A

Use this to compu e E]max X, Y]
TO)\ Sum - ‘E(m(;)(] g \P{m(}x>-\—:l
yoo(e.m f o - gy

= |\ 1 - _J---——
vom’ccgf(trlon > T T AT
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Min of n Uniforms " & WXz x)

Let Xi,..., X, be i.i.d. and umform over [0, 1].
“ Plag x<b] b-a.

What is P[min(X, ..., Xn) < x]7? for 0caébsl
= 1- Plminzx) Pl =1L oaly
O ow.
o 21-P(x,2%,., %2 ) pra—
ind-> - 1-Px2z2x] . - PXa2 %) unh‘f(c(),n)
FL-0-0" in expeCiais:

Use this to compute E[min(Xy, ..., Xl L %

il Qum: ©°° . o/ MM
—_— min 2K dx lﬁg : ——+

N
— L1 ™n o
=5 (\m ) b

QJ,‘%&) = 0- (’n-ﬂ) n<\
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Min of n Uniforms
from
prev.

What is the CDF of min(Xy, .. ., X,)? sude
Foun (0= Plmn € )= 4-(-2)"
What is the PDF of min(X;, ..., X,)?
% (- (=)
Q -n(\- )
o o
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Memorylessness of Exponential

We can't talk about independence without talking
about conditional probability!

Let X ~ Expo(A). X is memoryless, i.e.
PX > s+ t|X > t] =P[X > 5]

LHS: \P[{xzs+£‘sﬂ{><>’°k'5]/_\“°““d“m -
— RUENt v

P X>t] )
Pl x2ott] o MS )<
PIX>t] ~ R A%

== plrzs)
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Conditional Density

What happens if we condition on events like
X = a? These have 0 probability!

The same story as discrete, except we now need
to define a conditional density:

e )Cm\:m*tmz

X y(X,y St s 00

M= TG e
Fx('x5=0-

Think of f(y|x) as
)

PLY €[y, y + dy]|X € [x, x + dX]]
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Conditional Density, Continued

Ty y*dy]
Gi ditional density f te A
IVEN a conditiona ensity Y|X Compupe(\( \blx ’)(]

If we know P[Y < y|X = x], compute
00

PlY <y]= f\P[\/eg \w—ﬂ%"@%\?mm-
T+ axorere: case on ! ZPLYEY X X2

Go with your gut! What worked for discrete also
works for continuous.
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Example: Sum of Two Exponentials

Let X;, X, be i.i.d Expo()) RVs.
Let Y = X; + X5.

CDF o &XpO
What is P[Y < y|X; = x]?
L ‘P‘:x‘-{—)(z(\j \X‘ =

= WL X3¢ ‘5’%]
What is P[Y < y]? \
coSe on yolues foc Koo

fPLYeylx=nl Pl
. 5‘60(\—&’“‘5"0){3)(‘(%)(1')(

_ ereiioSt.
= (Y (e M)A " g,
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Example: Total Probability Rule

What is the CDF of Y? gYexost

]

What is the PDF of Y7
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Break

If you could immediately gain one new skill, what
would it be?
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The Normal (Gaussian) Distribution

X is a normal or Gaussian RV If:

1 Symm. OloouLt
_ S/ s mMeon
\/-_’,L ") = 5=¢

Parameters: .A&, o

Notation: X ~ M(;bvi)
E[X] = Var(X) = g2

Standard Normal: J\=0, 0%° 1

AR LI
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Gaussian Tail Bound

Let X ~ N(0,1).
Easy upper bound on P[|X| > «], for o« > 17
(Something we've seen before...)

Chepyshev: 60
\Or
PlIx-0\2t)€ ~ o0
e

—_ C>(2'
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Gaussian Tail Bound, Continued

Turns out we can do better than Chebyshev.
lo.)
Idea: Use [° -e/2dx < L"{%—Q-?‘ﬂd%
P12t A P % 2]
2 -1) "o 4
Shaded: \X|Zot
= Q f”__ 72 4

- ﬁ)(e"%x \ﬂ\

e
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Shifting and Scaling Gaussians
Let X ~ N (u, @) and Y = Z=£. Then:

YNJ\/’(O,L)

Proof: Compute Pla <Y < b).
Notes: OUx & SUOpe.

Change of variables: x = oy + u.
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Shifting and Scaling Gaussians

Can also go the other direction:

If X ~N(0,1), and Y =+ 0X:
Y is still Gaussian!

E[Y] = E MFoX]= Mt crl&?d
=N

Var(Y) = \oy (){‘\'O‘X) = \IO\((O’X)
- o1Vl
= Ot w*
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Sum of Independent Gaussians
Let X, Y be independent standard Gaussians.

Let Z =[aX + c]+ [bY +d|.
Then, Z is also Gaussian! (Proof optional.)

E[Z] = E[aXtC tbY+ d]- Q\E\?/(Frb@m
_erd tctd

Var(Z) = \JQv ((0( toY+ Q+d>
=\or (0X+bY) s+

= \o¢ (o) + Yor (bY)
- a2Nor (X) £ 52 Nar(Y) = 0t th?
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Example: Height gxeccise

Consider a family of a two parents and twins with
the same height. The parents’ heights are
independently drawn from a N/(65, 5) distribution.
The twins' height are independent of the parents’,
and from a AN/ (40, 10) distribution.

Let H be the sum of the heights in the family.
Define relevant RVs:
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Example: Height

E[H] =

Var[H] =



Sample Mean

We sample a RV X independently n times.
X has mean u, variance o°.

Denote the sample mean by A, = 15 tat

sl - €[5 (x LIk *(W\’f TREXD

= k) <N
Varl®, = \10(( (Xt X))
[\1(1(0(\)"‘ Jr\!or(Xn)}

'wf(?P(Ul)
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The Central Limit Theorem (CLT)

Let X1, X5, ..., X, be i.i.d. RVs with mean u,
variance o2. (Assume mean, variance, are finite.)

Sample mean, as before: A, = w
Recall: E[A;] = M,
Var(A,) = a2
n o .

Normalize the sample mean: A S’(O“gc%-\a«\'\bﬂ

e nT ————
> eon, G V0 Aq WO
Then, as n — oo, polLOwS &

Te0S\r WOSE L~ 1Y dUSt.

23/26



Example: Chebyshev vs. CLT

Let X1, Xo, ... bei.i.d RVs with E[X;] =1 and
Var(X;) = 1. Let A, = A8t

E[A)] = 1L éc,xpec’rax\ocn oF Sf ngie somple.
S\na\
Var(A,) — T2 Yarance of & single Sampe
N 20 p - E[An]
Aq” ELARS

Normalize to get AL \IQ([A"D

- gl 8 ‘k O o
N OY U\ n)° \10((%‘5%
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Example: Chebyshev vs. CLT

Upper bound P[A], > 2] for any n.
(We don’t know if A is non-neg or symmetric.)

lP{AnIZQ.-S < lP{\AK—-O‘Z‘Z] < \fO.f((Zén/Z
A
EfAA]

é_‘/-

If we take n — oo, upper bound on P[A] > 2]?
O aaussion Todf,, % v
m < X Z= NS
“ 200 ‘PD‘«\EZ} Const ¥ € @

\l/uchus ® 8-, 217
ero

b3 %
AC(0,4) A4St &

1 o 1 z
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Summary

» Independence and conditioning also
generalize from the discrete RV case.

» The Gaussian is a very important continuous
RV. It has several nice properties, including
the fact that adding independent Gaussians
gets you another Gaussian

» The CLT tells us that if we take a sample
average of a RV, the distribution of this
average will approach a standard normal.
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