
Continuous RVs Continued:

Independence, Conditioning,

Gaussians, CLT

CS 70, Summer 2019

Lecture 25, 8/6/19
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Not Too Di↵erent From Discrete...

Discrete RV:

X and Y are independent i↵ for all a, b:

P[X = a,Y = b] = P[X = a] · P[Y = b]

Continuous RV:

X and Y are independent i↵ for all a  b, c  d :

P[a  X  b, c  Y  d ] =
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A Note on Independence

For continuous RVs, what is weird about the
following?

P[X = a,Y = b] = P[X = a] · P[Y = b]

What we can do: consider a interval of length dx
around a and b!
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Independence, Continued

If X ,Y are independent, their joint density is the
product of their individual densities:

fX ,Y (x , y ) =

Example: If X ,Y are independent exponential
RVs with parameter �:
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Example: Max of Two Exponentials

Let X ⇠ Expo(�) and Y ⇠ Expo(µ).
X and Y are independent.
Compute P[max(X ,Y ) � t].

Use this to compute E[max(X ,Y )].
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Min of n Uniforms
Let X1, . . . ,Xn be i.i.d. and uniform over [0, 1].

What is P[min(X1, . . . ,Xn)  x ]?

Use this to compute E[min(X1, . . . ,Xn)].
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Min of n Uniforms

What is the CDF of min(X1, . . . ,Xn)?

What is the PDF of min(X1, . . . ,Xn)?
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Memorylessness of Exponential

We can’t talk about independence without talking
about conditional probability!

Let X ⇠ Expo(�). X is memoryless, i.e.

P[X � s + t|X > t] = P[X � s]
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Conditional Density

What happens if we condition on events like
X = a? These have 0 probability!

The same story as discrete, except we now need
to define a conditional density:

fY |X (y |x) =
fX ,Y (x , y )

fX (x)

Think of f (y |x) as

P [Y 2 [y , y + dy ]|X 2 [x , x + dx ]]
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Conditional Density, Continued

Given a conditional density fY |X , compute

P[Y  y |X = x ] =

If we know P[Y  y |X = x ], compute

P[Y  y ] =

Go with your gut! What worked for discrete also
works for continuous.
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Example: Sum of Two Exponentials

Let X1,X2 be i.i.d Expo(�) RVs.
Let Y = X1 + X2.

What is P[Y < y |X1 = x ]?

What is P[Y < y ]?
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Example: Total Probability Rule

What is the CDF of Y ?

What is the PDF of Y ?
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Break

If you could immediately gain one new skill, what
would it be?
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The Normal (Gaussian) Distribution

X is a normal or Gaussian RV if:

fX (x) =
1p
2⇡�2

· e(x�µ)2/2�2

Parameters:

Notation: X ⇠

E[X ] = Var(X ) =

Standard Normal:
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Gaussian Tail Bound

Let X ⇠ N (0, 1).
Easy upper bound on P[|X | � ↵], for ↵ � 1?
(Something we’ve seen before...)
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Gaussian Tail Bound, Continued

Turns out we can do better than Chebyshev.

Idea: Use
R1
↵

1p
2⇡
e
�x2/2
dx 
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Shifting and Scaling Gaussians

Let X ⇠ N (µ,�) and Y = X�µ
� . Then:

Y ⇠

Proof: Compute P[a  Y  b].

Change of variables: x = �y + µ.
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Shifting and Scaling Gaussians

Can also go the other direction:

If X ⇠ N (0, 1), and Y = µ+ �X :
Y is still Gaussian!

E[Y ] =

Var(Y ) =
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Sum of Independent Gaussians

Let X ,Y be independent standard Gaussians.

Let Z = [aX + c ] + [bY + d ].
Then, Z is also Gaussian! (Proof optional.)

E[Z ] =

Var(Z ) =
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Example: Height

Consider a family of a two parents and twins with
the same height. The parents’ heights are
independently drawn from a N (65, 5) distribution.
The twins’ height are independent of the parents’,
and from a N (40, 10) distribution.

Let H be the sum of the heights in the family.
Define relevant RVs:
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Example: Height

E[H] =

Var[H] =
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Sample Mean

We sample a RV X independently n times.
X has mean µ, variance �2.

Denote the sample mean by An =
X1+X2+...+Xn

n

E[X ] =

Var(X ) =
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The Central Limit Theorem (CLT)

Let X1,X2, . . . ,Xn be i.i.d. RVs with mean µ,
variance �2. (Assume mean, variance, are finite.)

Sample mean, as before: An =
X1+X2+...+Xn

n

Recall: E[An] =
Var(An) =

Normalize the sample mean:

A
0
n
=

Then, as n !1, P[A0
n
]!
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Example: Chebyshev vs. CLT

Let X1,X2, . . . be i.i.d RVs with E[Xi ] = 1 and
Var(Xi) =

1
2. Let An =

X1+X2+...+Xn
n

.

E[An] =

Var(An) =

Normalize to get A0
n
:

24 / 26

1

02

a-= If

ECA'n7=EfAn]= o

⇒
Ende:

Var ( A
'

n ) = Var ( An -1 this !

C- expectation of single sample .

← variance of a single sample

-
An - IE CAN]

-

tartan



Example: Chebyshev vs. CLT

Upper bound P[A0
n
� 2] for any n.

(We don’t know if A0
n
is non-neg or symmetric.)

If we take n !1, upper bound on P[A0
n
� 2]?
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Summary

I Independence and conditioning also
generalize from the discrete RV case.

I The Gaussian is a very important continuous
RV. It has several nice properties, including
the fact that adding independent Gaussians
gets you another Gaussian

I The CLT tells us that if we take a sample
average of a RV, the distribution of this
average will approach a standard normal.
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