

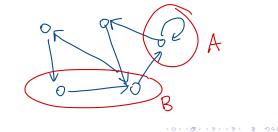
15/23

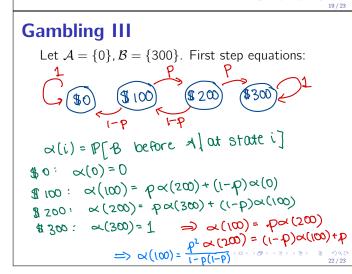
18/23

Probability of ${\mathcal A}$ Before ${\mathcal B}$

Let $\mathcal A$ and $\mathcal B$ be two **disjoint** subsets of the states $\mathcal S$ of a Markov chain.

Let $\alpha(i)$ be the probability that we enter \mathcal{A} before entering \mathcal{B} , if we start at state *i*.





Probability of
$$\mathcal{A}$$
 Before \mathcal{B}
Can also run first step analysis!
If $i \in \mathcal{A}$: $\alpha(i) = 1$ Already in \mathcal{A} !
 $i \in \mathcal{B}$: $\alpha(i) = 0$ Impossible to get
to Abefore \mathcal{B} .
 $eise: \alpha(i) = \sum_{\substack{neighbors \\ of i}} \operatorname{Fir}_{j} \operatorname{I} \alpha(j)$
Casework based on taking 1
step from i.

Summary

- Markov chains let you model real world problems with states and transition probabilities
- The Markov property tells you that where you go next only depends on the current state, not on any previous history.
- The first step analysis is a simple way of analyzing expected hitting times and probabilities of hitting certain states before others.

23/23

Gambling III

I start with \$100. In each round, I win \$100 with probability p and lose \$100 with probability (1 - p). I end when I either have \$0 or \$300.

What is the probability I end the game with \$300?

