
Intro to Markov Chains

CS 70, Summer 2019

Lecture 26, 8/7/19
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Applications of Markov Chains

I Models systems of states and transitions

I PageRank – Google’s search algorithm.
States are webpages, transitions are links.

I Tons of applications outside of CS: statistical
physics, speech recognition, bioinformatics,
sabermetrics...
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Markov Chain Definition
Three key components (and one assumption):

I Set S of
Think of these as

I Transition probabilities.
Think of these as
Transitions out of a node should sum to

I Initial distribution µ(0).
Gives the probability that we start at a state.

I Memorylessness (aka Markov property)
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Example: Gambling
I start with $2. If I guess a coin flip correctly, I
get $1, and if I am incorrect, I lose $1.
I stop gambling when I either hit $0 or $4.
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Traversing the Chain
X0 is the initial state.
Choose transitions according to its probability.

Xi is the state you’re on at time i . Xi is a RV.

Markov Property:
Only the current state matters for the next.

”Knowing the entire history of the chain is
equivalent to just knowing the current state.”
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Gambling II
Same chain as before:

What is P[X1 = 3|X0 = 2]?

What is P[X100 = 3|X99 = 2,X0 = 2]?

What is P[X1 = 3,X2 = 2,X3 = 3,X4 = 4]?
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Gambling II

What is P[X4 = 4]?

7 / 23

The Transition Matrix
Calculations are easier to do when we stick the
transition probabilities in a matrix.

Transition matrix P.
The (i , j) entry is P[X1 = j |X0 = i ], or the
transition from i to j .
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The Distribution Vectors
So far: saw initial distribution µ(0).
Can represent it as a row vector:

We can also define a distribution at time n:
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Distribution at Time 1

We’ll prove that µ(0)P = µ(1).

If we know µ(1), how do we get µ(2)?
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Distribution at Time n

In general: µ(n) = Pnµ(0). (Proof optional.)

Example: Two State Markov Chain
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Aside: n →∞
For the two state Markov chain, as n →∞,

Pn →

No matter what µ(0) is:

Tomorrow: we’ll study this in greater detail!
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Break

Whats the weirdest thing youve ever eaten?

13 / 23

First Step Analysis: Two Heads
I repeatedly flip a coin, and stop when I get two
heads in a row. What is the expected number of
flips I need before stopping?
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First Step Analysis: Two Heads
For state S , let τ(S) be the expected time to two
heads, starting from state S .

Analyze a single transition out of each state to
get the first step equations:
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Max of Two Geometrics
Let X ,Y ∼ Geometric(p). X ,Y are independent.
Say X ,Y model time until a success.
max(X ,Y ) is the first time that both X ,Y have
succeeded at least once. What is E[max(X ,Y )]?
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Max of Two Geometrics
Set up the first step equations, and solve:
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Coupon Collector: A Markov Chain?
Can we reformulate Coupon Collector (with n
distinct coupons) as a Markov chain?

How do we recover the expected number of
coupons needed to get all n distinct ones?
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Probability of A Before B
Let A and B be two disjoint subsets of the states
S of a Markov chain.

Let α(i) be the probability that we enter A before
entering B, if we start at state i .
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Probability of A Before B
Can also run first step analysis!
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Gambling III
I start with $100. In each round, I win $100 with
probability p and lose $100 with probability
(1− p). I end when I either have $0 or $300.

What is the probability I end the game with $300?
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Gambling III
Let A = {0},B = {300}. First step equations:
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Summary

I Markov chains let you model real world
problems with states and transition
probabilities

I The Markov property tells you that where
you go next only depends on the current
state, not on any previous history.

I The first step analysis is a simple way of
analyzing expected hitting times and
probabilities of hitting certain states before
others.
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