Intro to Markov Chains

CS 70, Summer 2019

Lecture 26, 8/7/19

(ロ)(母)(さ)(さ)(さ)(さ)(1/23)

Example: Gambling

I start with \$2. If I guess a coin flip correctly, I get \$1, and if I am incorrect, I lose \$1. I stop gambling when I either hit \$0 or \$4.

Applications of Markov Chains

- Models systems of states and transitions
- PageRank Google's search algorithm.
 States are webpages, transitions are links.
- Tons of applications outside of CS: statistical physics, speech recognition, bioinformatics, sabermetrics...

Traversing the Chain

 X_0 is the initial state. Choose transitions according to its probability.

 X_i is the state you're on at time *i*. X_i is a **RV**.

Markov Property: Only the current state matters for the next.

"Knowing the entire history of the chain is equivalent to just knowing the current state."

Markov Chain Definition

Three key components (and one assumption):

- Set S of Think of these as
- Transition probabilities.
 Think of these as
 Transitions out of a node should sum to
- Initial distribution μ⁽⁰⁾.
 Gives the probability that we start at a state.
- Memorylessness (aka Markov property)

Gambling II

Same chain as before:

What is $\mathbb{P}[X_1 = 3 | X_0 = 2]$? What is $\mathbb{P}[X_{100} = 3 | X_{99} = 2, X_0 = 2]$? What is $\mathbb{P}[X_1 = 3, X_2 = 2, X_3 = 3, X_4 = 4]$?

(ロ)

<ロ>(ロ)(母)(さ)(さ)(さ) きの(の 3/23

Break	First Step Analysis: Two Heads	First Step Analysis: Two Heads
Whats the weirdest thing youve ever eaten?	I repeatedly flip a coin, and stop when I get two heads in a row. What is the expected number of flips I need before stopping?	For state S , let $\tau(S)$ be the expected time to two heads, starting from state S . Analyze a single transition out of each state to get the first step equations :
<ロ><ラ><さ><さ><さ><さ><さ><さ><さ><さ><さ>< 13/23	<ロ>・(の)・(ミ)・(ミ)・ミン (この)の(の) 14/23	・ロト・(グト・ミト・ミージへで 15/23
Max of Two Geometrics	Max of Two Geometrics	Coupon Collector: A Markov Chain?
Let $X, Y \sim \text{Geometric}(p)$. X, Y are independent . Say X, Y model time until a success. max (X, Y) is the first time that both X, Y have succeeded at least once. What is $\mathbb{E}[\max(X, Y)]$?	Set up the first step equations, and solve:	Can we reformulate Coupon Collector (with <i>n</i> distinct coupons) as a Markov chain? How do we recover the expected number of coupons needed to get all <i>n</i> distinct ones?
<ロ><ラ><ラ><そう、そう、そう、そう、そうのので 16/23	<ロ><ラ>(こ)、(う)、(さ)、(さ)、(さ)、(う)へ() 17/23	<ロ><ラ><ラ><き><き>をつくの。 18/23

Probability of \mathcal{A} Before \mathcal{B} Let \mathcal{A} and \mathcal{B} be two disjoint subsets of the states \mathcal{S} of a Markov chain.Let $\alpha(i)$ be the probability that we enter \mathcal{A} before entering \mathcal{B} , if we start at state i .	Probability of <i>A</i> Before <i>B</i> Can also run first step analysis!	Gambling III I start with \$100. In each round, I win \$100 with probability p and lose \$100 with probability (1 - p). I end when I either have \$0 or \$300. What is the probability I end the game with \$300?
<ロ> (費)、(言)、(言)、(言)、(言)、(言)、(う)(() 19/23	<ロ><ラ><き><き>をつくひ 20/23	<ロ><ラ><き><き><き><き> 21/23
Gambling III Let $\mathcal{A} = \{0\}, \mathcal{B} = \{300\}$. First step equations:	 Summary Markov chains let you model real world problems with states and transition probabilities The Markov property tells you that where you go next only depends on the current state, not on any previous history. The first step analysis is a simple way of analyzing expected hitting times and probabilities of hitting certain states before others. 	