Intro to Markov Chains

CS 70, Summer 2019

Lecture 26, 8/7/19
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Applications of Markov Chains
» Models systems of states and transitions

» PageRank — Google's search algorithm.
States are webpages, transitions are links.

» Tons of applications outside of CS: statistical
physics, speech recognition, bioinformatics,
sabermetrics...
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Markov Chain Definition

Three key components (and one assumption):

> Set S of States
Think of these as VExtices of @ graph

» Transition probabilities. \P{L-"ﬁ]
Think of these as d{recttd €dges in a graph
Transitions out of a node should sum to 1

» Initial distribution ().
Gives the probability that we start at a state.

» Memorylessness (aka Markov property)
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Example: Gambling

| start with $2. If | guess a coin flip correctly, |
get $1, and if | am incorrect, | lose $1.

| stop gambling when | either hit $0 or $4.
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2 . = 4}= 1.
Traversing the Chain t Op[xl=q;1=é'

sl T
Xo 1s the initi_al. state. | ° ng PB.:K}:%
Choose transitions according to its probability.

X; Is the state you're on at time /. X is a RV.
Markov Property: (MQMDﬂj less”)

Only the current state matters for the next.

"Knowing the entire history of the chain is
equivalent to just knowing the current state.”

\P[Xnﬂ: Sl \ Xo=So, X =Sty Xn=5n ]
= \'\)[Xn’cfSnﬂ\XY\—’S“]
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Gambling 1i — L pwb

) - o
Same chain as before: 1 ®
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What is P[Xl = 3|X0 = 2]7 > \P[Xm ]qu;z}
What is P[Xloo = 3|X99 =2, Xy = 2]? = P[Xl xo 2_]
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Gambling 1l

What is P[X, = 4]7 S0Me stup  Xo=2
' XO X %y X} Xﬁ :4
awht: 2 3 4 F 4
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The Transition Matrix

Calculations are easier to do when we stick the
transition probabilities in a matrix.

Transition matrix P. lP[(,—? /5]
The (1,)) entry is P[X; = j| Xy = 1], or the
trayisition from / to /.  « OO\ Ndex=Star®

Pr o 1f0 ) 4 eck:
o owity #l1-1] é[\-n] ?M_U_(\_

0 2{P(2>1] | fow sum: L
=3 - col sum: nm"f\t%_)
0 OHIBrWISE 0
/,,’ restnenon
o o -
irﬂjeJL EZ(\*Y'\QJS' non (1355

=Staked <1
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The Distribution Vectors

So far: saw initial distribution u(©).
Can represent it as a row vector:

(1) fxe?] - )

index — 1 = 3 .. &enm'@
= §yafes Sumio i

We can also define a distribution at time n:

[\P[X“'—‘ 1 xn® 7] . 3 ',»\

wndex — 4 2 2.
- SRARRS cul s
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Distribution at Time 1 P10
CPD%e=1] PI%=2) ... ) P2

A
We'll prove that u(@p = pu),
KN Ve ET

\P[-Xp‘- \,] = \,'\’(\ mw\j ot L{(:L)
= u®x oM olumn of P :
= P{xo=1]*PXe= 1| %o ] + PIxe? Z]X\P[x‘ 0| Xe=2

COSeWory on ‘Xo 1 o Tora Poo. R\Me

-
-

If we know p(? ), how do we get u@?
M(y_) _ M(:L) P = }kw) PZ
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Distribution at Time n
-\ vow vedhr
In general: pu(" = P. (Proof optional.)

Example: Two State I\/Iarkov Chain

QC a € (0, l)
¥> X:\Z:F. C?~ r"‘—"’—_"\ L g“
Nores?) P™ sty T ]
(NOFe! = [ c/ C

Prove USING wNAUCTON
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Aside: n — o0

For the two state Markov chain, as n — oo,

Loy
P”—>[z 7_1

L L

2 z

No matter what u(©@ is:

1
Cp +p)
R
i
lp l-?-l[_z_‘_ E—X:[ 2 %)
2 2
Tomorrow: we'll study this in greater detail!
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Break

What's the weirdest thing you've ever eaten?
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First Step Analysis: Two Heads

| repeatedly flip a coin, and stop when | get two
heads in a row. What is the expected number of
flips | need before stopping?

1 1 1
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First Step Analysis: Two Heads

For state S, let 7(S) be the expected time to two
heads, starting from state S. 4 voridbotes: (&)
T ()
Analyze a single transition out of each state to' (0
get the first step equations: T(E)

Ji_ m L 14 ’T(g%'.\:‘"‘i'r("\)*i%ﬁ?
RN o
5 d T L ETOVRG
Oli v T(E) =0
Gaood : TF) . Noves,
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Max of Two Geometrics

Let X, Y ~ Geometric(p). X, Y are independent.
Say X, Y model time until a success.

max(X, Y) is the first time that both X, Y have
succeeded at least once. What is E[max(X, Y)]?

SHOXES = ¥ SuCCesses

-
2009 () p

elcaican:
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16 /23



Max of Two Geometrics
Set up the first step equations, a\’d solve:

wr (Je o
U—P?C OENe

T w
FL.!)0§¥1 <0
bﬁ}, forl. ¥ sulteed

(0= erpecicd time wnidl (2) Fom L
o T(0)" 1.+ (- T +2p0-p)T() + TR
1 @)= TP T $ 07
20 T@D=0 EXErOSe: FiniSh Up.
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Coupon Collector: A Markov Chain?

Can we reformulate Coupon Collector (with n
distinct coupons) as a Markov chain?

How do we recover the expected number of
coupons needed to get all n distinct ones?

5\—ch(5= £ dUSTING  Loupons .

3 j)
o % x4
v {Y\r _3 —

OO OHI . €9

Lex T(0)* expecttd fime o nn Aom “L”
coak: T(0).
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Probability of A Before 5

Let A and B be two disjoint subsets of the states
S of a Markov chain.

Let a(/i) be the probability that we enter A before
entering B, if we start at state /.

o () A
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Probability of A Before 5
Can also run first step analysis!
TE LA ol(i)r g Areay m A
TMpOSSible o gtk

ve g =0 £ AveFore B
ase: o (D)= L gled)
ndthoﬁnﬁ
0

Cosework lasta on taking 1
g1ep from L.
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Gambling 11

| start with $100. In each round, | win $100 with
probability p and lose $100 with probability
(1 —p). | end when | either have $0 or $300.

What is the probability | end the game with $3007

é B o
® B
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Gambling 11
Let A= {0}, B={300}. First step equations:

ES S
0.5 o

i) = P8 \oefore A) o stose U]

$o0° =«(0)=0
g o R(w0)= p < (200) * (\-$)=t(0)
§ 200 o (200)= ® *(3W) + (- )
gam: (3®)={ = (W)= pr®
b ) Lo (D) = (- p)oleR) +p
= o(100) = 150 25



Summary

» Markov chains let you model real world
problems with states and transition
probabilities

» The Markov property tells you that where
you go next only depends on the current
state, not on any previous history.

» The first step analysis is a simple way of
analyzing expected hitting times and
probabilities of hitting certain states before
others.
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