The Symmetric Two-State Chain Different Initial Distributions?
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Asymmetric Two State Chain

Similar example to the one before:
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Is there a stationary distribution? If so, what is it?
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A funny looking chain:
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Is there a stationary distribution? If so, what is it?
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Q: When do we have a stationary distribution?
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Irreducibility

A Markov chain is irreducible we can go from
every state / € S to every other state j € S,
possibly in multiple steps.

Are these chains irreducible:
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Long Run Behavior
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Irreducibility Implies...

Theorem:
Let S, P be an irreducible Markov chain.
S is a finite set.
The stationary 7 exists and is unique.
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If you were a random variable, which one would
you be and why?




Non-Loopy Two State Chain

A simple looking chain:
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Is there a stationary distribution? If so, what is it?
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Two Scenarios...
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Periodicity

For a state /, its periodicity is the gecd of the
length of all tours (i.e. walks from i to /).

Examples:
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Periodicity + Irreducibility

Let S, P define an irreducible Markov chain.
\ hen, every state has the same period.
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Cars and Trucks

Three out of every four trucks on the road are
followed by a car, while only one out of every five
cars is followed by a truck. What fraction of
vehicles on the road are trucks? ® o XAty
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Step 1: Draw the Markov Chain.
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Cars and Trucks

Step 2: Compute the stationary distribution.
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Markov Chain on a Graph

00 NOT mMmen acyguict
Let G be any loopless, connected graph. 4

Each vertex represents a state, and at each
vertex, we transition to a neighbor each with the
same probability.

Q: Is this Markov chain irreducible?
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Markov Chain on a Graph

The unique stationary dlstrlbutlon T is given by:
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Sanity Check

Let G be a complete graph. Ka,
What do we know about its long run behavior?
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Aperiodic! EXErcise

Let G be an odd cycle.
What do we know about its long run behavior?

Sanity Check

Let G be a hypercube.
What do we know about its long run behavior?

What fraction of time does it spend on strings
with exactly k zeros?

Summary
» Stationary distributions do not change when
we multiply them by the transition matrix.

» Irreducible chains always have a unique
stationary distribution.

» We can say something about fraction of
time spent in state / if a chain is irreducible

» If an irreducible chain is also aperiodic, the
probability of being in a state at any time far
enough out approaches ;.

Next week: Conceptual review!




