

What happens as $n \to \infty$?

(□) (問) (目) (日) (10/23)

Loopy Two State Chain

A funny looking chain:

Is there a stationary distribution? If so, what is it?

Q: When do we have a stationary distribution? When do we have exactly 1?

Irreducibility Implies...

Theorem:

Let S, P be an **irreducible** Markov chain. S is a **finite** set. The stationary π exists and **is unique**.

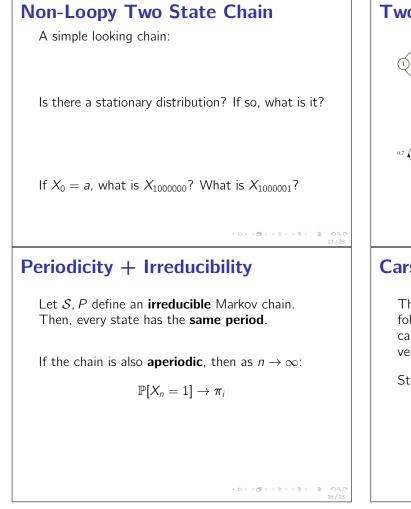
For any initial $\mu^{(0)}$ and all states $i \in S$:

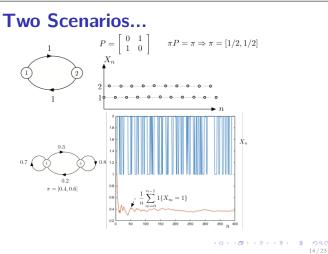
Irreducibility

A Markov chain is **irreducible** we can go from every state $i \in S$ to every other state $j \in S$, possibly in **multiple steps**.

Are these chains irreducible:

Two state asymmetric chain?


Gambling chain (from yesterday)?


Break

8/23

If you were a random variable, which one would you be and why?

9/23

Cars and Trucks

Three out of every four trucks on the road are followed by a car, while only one out of every five cars is followed by a truck. What fraction of vehicles on the road are trucks?

Step 1: Draw the Markov Chain.

Pe	Pri	O	dı	C	It/	/
		-		-	J	

For a state i, its **periodicity** is the **gcd** of the length of all **tours** (i.e. walks from i to i).

Examples: Asymmetric two state chain?

Gambling chain from yesterday?

15 / 23

Cars and Trucks

Step 2: Compute the stationary distribution.

<□> <♂> < ≥> < ≥> < ≥> ≥ < ○へ (?) 17/23

 Markov Chain on a Graph Let <i>G</i> be any loopless, connected graph. Each vertex represents a state, and at each vertex, we transition to a neighbor each with the same probability. Q: Is this Markov chain irreducible? 	Markov Chain on a Graph The unique stationary distribution π is given by: $\pi =$ Can we verify this?	Sanity Check Let <i>G</i> be a complete graph. What do we know about its long run behavior? Let <i>G</i> be an odd cycle. What do we know about its long run behavior?
Sanity Check	Summary	<ロ>・(の)、(き)、(き)、(き)、(き)、(き)、(き)、(き)、(き)、(き)、(き
Let <i>G</i> be a hypercube. What do we know about its long run behavior?	 Stationary distributions do not change when we multiply them by the transition matrix. Irreducible chains always have a unique 	
What fraction of time does it spend on strings	 We can say something about fraction of time spent in state <i>i</i> if a chain is irreducible 	
with exactly <i>k</i> zeros?	 If an irreducible chain is also aperiodic, the probability of being in a state at any time far enough out approaches π_i. 	
(ロシ <i>ィ</i> ⑦シィミン ミラ・クスク 22/23	Next week: Conceptual review!	