
More Markov Chains:

Classification of States,

Stationary Distribution

CS 70, Summer 2019

Lecture 27, 8/8/19
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The Symmetric Two-State Chain

Transition matrix P =

Last time: Pn =

As n !1, Pn !
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Di↵erent Initial Distributions?

Let µ(0) = [p (1� p)] be some initial distribution
on the symmetric two state chain.

What is µ(n) = µ(0)Pn as n !1?

Observe: µ(0) = [1
2

1

2
] is the only initial

distribution such that
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Stationary Distribution

Let S,P be the states and transition matrix of a
Markov chain. A distribution µ over states is
stationary or invariant if

Intuition:
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↳ rep . as vector

µ = µ p Cr r t
T

indexes are States

Notation : TI refers to a stationary dist .

Tli ← ith entry of IT

Always True : UM "l=µln ) p

when n→ - atm In ⇒ a- UP



Stationary Distribution: A Visual
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Initial Distributions: A Visual
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Asymmetric Two State Chain

Similar example to the one before:

Is there a stationary distribution? If so, what is it?
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Loopy Two State Chain

A funny looking chain:

Is there a stationary distribution? If so, what is it?

Q: When do we have a stationary distribution?

When do we have exactly 1?
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Irreducibility

A Markov chain is irreducible we can go from

every state i 2 S to every other state j 2 S,
possibly in multiple steps.

Are these chains irreducible:

Two state asymmetric chain?

Gambling chain (from yesterday)?
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NO way to go O → anywhere !



Long Run Behavior

Let I{Xm = i} be an indicator for whether Xm = i .

How do we interpret the quantity below?

1

n

n�1X

m=0

I{Xm = i}

What happens as n !1?
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Irreducibility Implies...

Theorem:

Let S,P be an irreducible Markov chain.
S is a finite set.
The stationary ⇡ exists and is unique.

For any initial µ(0) and all states i 2 S:
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Break

If you were a random variable, which one would

you be and why?

12 / 23



Non-Loopy Two State Chain

A simple looking chain:

Is there a stationary distribution? If so, what is it?

If X0 = a, what is X1000000? What is X1000001?
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Two Scenarios...
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Periodicity

For a state i , its periodicity is the gcd of the
length of all tours (i.e. walks from i to i).

Examples:

Asymmetric two state chain?

Gambling chain from yesterday?
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Periodicity + Irreducibility

Let S,P define an irreducible Markov chain.
Then, every state has the same period.

If the chain is also aperiodic, then as n !1:

P[Xn = 1]! ⇡i
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Cars and Trucks

Three out of every four trucks on the road are

followed by a car, while only one out of every five

cars is followed by a truck. What fraction of

vehicles on the road are trucks?

Step 1: Draw the Markov Chain.
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Cars and Trucks

Step 2: Compute the stationary distribution.
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Markov Chain on a Graph

Let G be any loopless, connected graph.
Each vertex represents a state, and at each

vertex, we transition to a neighbor each with the

same probability.

Q: Is this Markov chain irreducible?
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Markov Chain on a Graph

The unique stationary distribution ⇡ is given by:

⇡ =

Can we verify this?
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Sanity Check

Let G be a complete graph.
What do we know about its long run behavior?

Let G be an odd cycle.
What do we know about its long run behavior?
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Sanity Check

Let G be a hypercube.
What do we know about its long run behavior?

What fraction of time does it spend on strings

with exactly k zeros?
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Summary

I Stationary distributions do not change when

we multiply them by the transition matrix.

I Irreducible chains always have a unique

stationary distribution.

I We can say something about fraction of

time spent in state i if a chain is irreducible

I If an irreducible chain is also aperiodic, the

probability of being in a state at any time far

enough out approaches ⇡i .

Next week: Conceptual review!
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