More Markov Chains:
Classification of States,
Stationary Distribution

CS 70, Summer 2019

Lecture 27, 8/8/19



The Symmetric Two-State Chain
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Different Initial Distributions?

Let u(® =[p (1 — p)] be some initial distribution
on the symmetnc two state chain.
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Stationary Distribution

Let S, P be the states and transition matrix of a
Markov chain. A distribution u over states is
stationary or invariant if > rep . 0s Veoror
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Stationary Distribution: A Visual

y

//
/
ml’&\ﬂl \ ofs 0"'2 % " ' /
Tm=mP"=mY 0 03 07| . °F A
1 3 06 04 0 o@/ N Tm(2)
d(s* or 025 T
‘ﬂmt W\ 0 % 0(5 71'm(3)

05 ol 0.b =02 03 03]
QQ \@ T={055 021 0.8]



Initial Distributions: A Visual
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Asymmetric Two State Chain

Similar example to the one before:
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Is there a stationary distribution? If so, what is it?
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Loopy Two State Chain v o
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Is there a stationary distribution? If so, what is it?
T=TP  identity
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Irreducibility

A Markov chain is irreducible we can go from
every state / € S to every other state j € S,
possibly in multiple steps.

Are these chains irreducible:
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Long Run Behavior
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Let /{X,, = i} be an indicator for whether X, = i.
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Irreducibility Implies...

Theorem:
Let S, P be an irreducible Markov chain.
S is a finite set.
@The stationary 7 exists and is unique.
T=1P
@Cor any initial 4(© and all states / € S:
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Break

If you were a random variable, which one would
you be and why?



Non-Loopy Two State Chain

A simple looking chain:
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Two Scenarios...
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Periodicity

For a state /, its periodicity is the gcd of the
length of all tours (i.e. walks from i to /).

Examples:
Asymmetric two state chain? \glgs &om 121
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Periodicity + Irreducibility

Let S, P define an irreducible Markov chain.
@Then, every state has the same period.
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Cars and Trucks

Three out of every four trucks on the road are
followed by a car, while only one out of every five
cars Is followed by a truck. What fraction of
vehicles on the road are trucks? ® o XML\

_ {N\t10) aStib.
Step 1: Draw the Markov Chain.
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Cars and Trucks

Step 2: Compute the stationary distribution.
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Markov Chain on a Graph
e 0y NOT nMen acyoC!
Let G be any loopless, connected graph.

Each vertex represents a state, and at each
vertex, we transition to a neighbor each with the

same probability.

Q: Is this Markov chain irreducible?
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Markov Chain on a Graph

The unlque statlonary dlstrlbutlon T IS given by:
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Sanity Check

Let G be a complete graph. K,
What do we know about its long run behavior?
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Let G be an odd cycle.
What do we know about its long run behavior?



Sanity Check

Let G be a hypercube.
What do we know about its long run behavior?

What fraction of time does it spend on strings
with exactly k zeros?



Summary
» Stationary distributions do not change when
we multiply them by the transition matrix.

» Irreducible chains always have a unique
stationary distribution.

» We can say something about fraction of
time spent in state / if a chain is irreducible

» |f an irreducible chain is also aperiodic, the
probability of being in a state at any time far
enough out approaches ;.

Next week: Conceptual review!



